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HIDDEN SURFACE REMOVAL

THROUGH OBJECT SPACE DECOMPOSITION

by

ROBERT MONROE SIMMONS

Submitted to the Department of Electrical Engincering and Computer Science
on January 14, 1982 in partial fulfillment of the requirements for

the Degree of Master of Science

ABSTRACT

Hidden surface removal is a computer graphics problem involving a great deal of
computation. The problem involves two facets: determining which objects should
appear in front of others (prioritization), and elimination of invisible portions of the
objects through geometric calculations. Prioritization is accomplished using object
space decomposition, which divides object space in a binary flashion such that the
objects in a scene (or critical portions of those objects) occupy unique sub-volumes of
the object space. An octal-tree is used to map the decomposition, and a simple traversal
of the tree, with minor interruptions for more sophisticated decision-making, results in
a stream of objects in priority order.

The second phase of the hidden surface problem, removal of invisible portions of
objects, often requires a great deal of computation. Parallel processing offers potential
for savings in response time, and the second part of this thesis investigates a number of
algorithms which attempt to take advantage of inherent concurrency. lhree algorithms
are presented: a quad-tree image space decomposition algorithm, a purely geometric
algorithm, and an algorithm which combines ideas from the first two.

Thesis Supervisor: Dr. Robert H. Flalstcad

Title: Assistant Professor of Eiectrical Engineering and Computci Science-1l
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Chapter 1. Introduction

1.1 Background

Simply put, the hidden surface removal problem involves creating a realistic

computer image of a complex three-dimensional scene. In real life, the hidden surface

problem is solved by the laws of physics; objects in front of others are opaque,

preventing the light reflected from further objects from reaching the eye. Much

research has been devoted to the hidden surface problem, with favorable results;

however, each hidden surface algorithm has been designed with a particular class of

scenes in mind. Put another way, it has proved very difficult to arrive at a method for

removing hidden lines/surfaces which works well for all applications. This has resulted

in a large selection of algorithms, each of which is optimized for its own class of scene

type and complexity. Each algorithm compromises in some form or fashion; some are

designed to produce marginally-realistic images in near real time, while others forsake

speed in the interest of producing extremely realistic images.

An overview of research into the hidden-line/hidden-surface problem may be

found in [201, and a bibliography on the subject is compiled in [6]. Thie hidden-linc

- - - -
,
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problem was the first to be researched, due mainly to the prevalence of line-drawing

displays. Roberts developed one of the first algorithms [181. The Warnock algorithm

resulted from efforts at the University of Utah to find a real-time algorithm [22]. Many

*" algorithms have been based on calculating the intersections of polygonal edges and

faces, notably those of Appel [1], Galimberti [5], Loutrel [13], and Matshushita [14].

Research into hidden-surface algorithms grew in proportion to interest in

raster-scan displays and shaded pictures. Romney [19] developed one of the first

scan-line algorithms. Watkins [23] developed Romney's work into a practical algorithm

and implemented it in hardware. At about the same time, Bouknight developed a

scan-line algorithm [2]. Newell, Newell, and Sancha developed a method of priority

sorting [15]; this work was further developed by Weiier and Atherton [24]. Fuchs [4]

devised a method of using object space decomposition to form priority-trees.

A common vein of sorting runs through all hidden-line/hidden-surface

algorithms. Sorting is used to facilitate depth-ordering for objects in a scene, as well as

provide other processing orders for elements within these objects (points, edges). Scan

line algorithms (such as the Watkins algorithm) generally use a Y-axis bucket sort,

followed by an X-axis bubble sort; this facilitates the production of the image data in

the same order that it will be displayed on the TV screen. Decomposition algorithils
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(notably, the Wamock algorithm) uses a Z-axis sort for all polygonal vertices to provide

a priority ordering based on screen depth. For any of the algorithms, the sorting phase

consumes a major portion of the processing time. It is for this reason that object space

decomposition is investigated, for it offers the potential for removing much of the

processing time normally devoted to sorting (hopefully without adding it somewhere

else). Object space decomposition is not presented as a panacea for hidden surface

problems, since it has limitations which restrict its applicability. However, the approach

does occupy its niche in the hidden surface arena, and so is investigated in this thesis.

1.2 Goals of the Thesis

The goals of this thesis are twofold. First, object space decomposition will be

explored in detail to evaluate its potential for rapidly determining the priority ordering

for objects ia a scene. The mechanics of decomposition will be explained and

evaluated. A particular approach will be adopted and discussed in detail, including the

benefit of the approach, any shortcomings, and improvements to the approach which

alleviate the shortcomings. What emerges will be a scheme for using a priori

information about the scene to provide a quick means for solving the priority ordering

problem. The use of decomposition, however, breaks the problem of hidden

surface/line removal into two distinct phases, since it totally separates the:1
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determination of the priority of shapes from the calculations which render the scene,

based on that priority ordering. Many algorithms combine the two facets.

The second goal of the thesis is to explore algorithms for calculating hidden

surfaces and lines using parallel processing. A number of algorithms are evaluated, and

while none of them is revolutionary in its own right, the goal is to discover the benefits

to be gained by utilizing any concurrency inherent in the algorithms. Some of the

algorithms are very simplistic in nature, yet offer substantial opportunity for

parallelism. More sophisticated algorithms, however, may reduce the total amount of

work required, but might offer less parallelism due to the increased data dependencies.

Each algorithm is analyzed in a parallel processing environment, in an effort to evaluate

the tradeoffs assocdated with the algorithm. These analyses suggest how much

parallelism can be expected for a given algorithm, and also indicate to what degree the

parallelism actually helps in drawing the scene.

The thesis is organized according to these goals. Chapter 2 deals exclusively with

decomposition and the establishment of a priority order for objects in a scene. Chapter

3 examines three algorithms for hidden surface removal with respect to computational

complexity growth and concurrency issues. All three algorithms assume an existing

priority order; as a result, Chapters 2 and 3 are closely coupled. Chapter 4 contains a

....~~~~~ ~ ~~ ~ ~ ~ ~~~~~~~~ _4 I --- _ 11 ... :-z '" . . . ... ---... . -
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Chapter 2. Decomposition

A scene is a collection of objects which we wish to view from an arbitrary position.

Object space decomposition is a method of organizing information about the scene

which goes beyond simply describing the objects; spatial relationships between the

objects are recorded. The basic method involves enclosing the scene in a volume large

enough to contain all objects, and subdividing the enclosing space until an

easily-interpretable representation of the scene results. A tree is used to map the

decomposition, and grows as the space is subdivided. Each node of the tree

corresponds to a unique sub-volume. The meaning of "easily-interpretable" is relative

in nature, but has to do with minimizing the processing time required to correctly draw

the objects in a scene from an arbitrary viewpoint. Rapidly drawing a scene depends on

the speed with which the proper ordering of the objects can be determined.

This ordering of objects, or prioritization, is usually done using explicit sorting.

Using object space decomposition, the priority order may be determined by a simple

traversal of the tree which maps the decomposed object space. The traversal order of

the tree depends only on the viewpoint, not on the objects in the scene. Thus, for a

I
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changing viewpoint, one could imagine the eye position rotating around the object

space, rather than the objects moving within the object space. A basic Lssumption is

that animation of objects within their space is more expensive to process than scenes

which are static, since animation requires a re-organization of the decomposition tree

each time an object moves. As with most graphics algorithms, the algorithms described

in this thesis assume a particular class of applications. The class assumed by this thesis

includes any applications in which it is desirable to view a static scene (city, building,

satellite) from an arbitrary viewpoint, possibly with near real-time rotation.

Basically, there are two facets to the decomposition process: the method of

subdividing the object space, and the halting condition (knowing when the sccne is

properly decomposed). The subdivision method determines the form of the resulting

structure (generally, what kind of tree it is), while the halting condition determines the

complexity and size of the structure. This chapter first explores three general methods

of decomposing object space: binary subdivision, unequal subdivision, and arbitrary

subdivision. Binary subdivision is chosen as the decomposition mechanism, and

Section 2.2 explores the method in considerable detail. Section 2.3 discusses the

benefits of decomposition with respect to deriving a priority order. Next, two

approaches to decomposition, "complete" and "centroid", are discussed. The centroid

approach is chosen as the mcie interesting. The final section explores and resolves a

'4t

~t
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problem with the centroid approach to decomposition.

2.1 Methods of Subdividing the Object Space

There are three basic methods of subdividing the volume which encloses a scene:

binary (equal) subdivision, unequal subdivision, and arbitrary sobdivision. The

simplest method of subdivision is binary decomposition, whereby each subdivision of

an enclosing volume results in eight equally-sized sub-volumes. This means that the

cutting planes which define the subdivision are perpendicular to the X, Y, and Z axes,

and each plane bisects the volume. The description of the decomposed scene may be

stored easily in the form of an -ctal-tree, where each node of the tree corresponds to a

specific sub-volume of the enclosing space. No special knowledge about the scene is

assumed; the resultant decomposed scene representation depends solely on the

dimensions and orientation of the largest enclosing volume. As will be seen later, the

regularity of binary decomposition greatly simplifies the interpretation of the

decomposed scene. Figure 2-1a illustrates binary decomposition.

The second method of subdivision is a generalization of the first and involves

creating an arbitrary number of sub-volumes from each subdivided volume. A volume

may be divided many times along each axis, though each cutting plane is still

perpendicular to one of the X, Y, or Z axes. This information nmy also be stored in tree

j|



binary unequal

(a) (b)

(C) arbitrary (d)

Figure 2-1

Methods of Object Space Decomposition
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form, but a great deal more information must be maintained with each node to identify

each sub-volume's position and dimensions. With binary decomposition, on the other

hand, the position of the node in the octal-tree provides all the positioning and

dimension information necessary. This second method of decomposition is sometimes

better suited to "neatly" separating scene components from each other, because much

more flexibility is allowed in deciding exactly where to divide. Figure 2-1b illustrates

this second approach to subdivision.

The third subdivision method generalizes even more than the second method- the

volume is not divided along the three major axes, but along arbitrary axes. Reddy [17]

developed a method which defines a number of enclosing polyhedra around the shapes

in the scene, and provides a maximum degree of freedom in specifying how the scene

should be decomposed. Figure 2-1c shows this approach. Fuchs [4] developed an

interesting approach to object space decomposition about arbitrary axes. Given a

3-space S and a set of polygons {PI 9P2 ," . .,P n ), polygon Pk is chosen. The volume is

divided into two half-spaces, Sk and Sk, , by the plane in which Pk lies. The remaining

polygons are divided between the two half-spaces (clipping polygons where necessary).

The half-spaces are distinguished by the use of a positive and negative reference

direction for each cutting plane; such a reference is necessary to enable division of the

remaining polygons among the half-spaces. 11he decomposition process continucs until

lif
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each half-space contains at most one polygon. The resultant data structure is a binary

tree, where the left edge of each sub-tree denotes a positive-oriented half-space and the

right the negative half-space. The root of each sub-tree contains the polygon whose

plane divides the two half-spaces. Because of the problem with the potentially large

number of additional polygons resulting from splitting the polygons at half-space

boundaries, the algorithm attempts to solve the problem by selecting each polygon Pk

such that a minimum number of new polygons will be generated. An inorder traversal

of the tree (process one sub-tree, visit the root, process the other sub-tree) generates a

priority order for the polygons; at each level of the tree, the subtree processed first is

the one which faces toward the eye position (the positive and negative orientations assist

in this determination). The importance of this method lies in the characteristic that, for

static scenes, the decomposition need only be done once. Changes in the eye position

(at image generation time) require only a different traversal order for (some portions of)

the tree.

Binary decomposition is rejected in many circles as being wasteful in processor

time, too inflexible, and not intelligent enough for many applications. The tradeoffs

involved in selecting one method over another are important, and this thesis takes the

position that the simplicity of binary decomposition is a very desirable characteristic,

since it leads to a very simnple interpretation of the scene. Also, processing
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considerations are disregarded in this case because the decomposition overhead is

assumed to be a one-time cost incurred during a non-critical portion of the applications'

lifetime. The scene will be decomposed as it is interactively defined by the user, and

the associated structure will be placed on a storage medium until it must be interpreted

for use in rendering the scene. At that time, the simplicity of the octal-tree structure

will aid in the rapid determination of the priority ordering. For these reasons, this

thesis investigates binary decomposition.

2.2 Accessing Information with Binary Decompositon

The simplicity of the bi-,ary decomposition method permits a straightforward

method for accessing information about the objects in a scene. As mentioned earlier,

the decomposed object space may be easily represented in the form of an octal-tree,

where each node of a tree is either a leaf or another octal-tree (a parent to eight

sub-nodes). A leaf may be "empty" or "occupied." The nodes of the tree at each level

correspond to unique sub-volumes. Given a three-dimensional point (x,y,z) in object

space, the node (volume) containing that point can be determined simply from the

coordinates of the point expressed as 10-bit numbers, assuming a range of 0-1023 in X,

Y, and Z [17]. Concatenating the high-order bit of each coordinate into a three-bit

number (X most significant) yields the node at the first level of subdivision. Within
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that sub-volume, concatenating the next-highest bit in each coordinate identifics the

node containing the point at the second level of subdivision, and so on, until the

concatenated low-order bits of each coordinate defines the node of highcst resolution

(one pixel on each side). This method is valid only for cubic volumes with dimensions

equal to some power of two.

For cases in which the enclosing volumes are not cubic or the dimensions are not

a power of two, special handling is required. One method is recursive in nature and

involves testing the input point (x,y,z) against each of three cutting planes to determine

which of eight octants the point lies in. [In this thesis, octant and quadrant refer to

three- and two-dimensional regions, respectively.] The cutting planes are defined by

bisecting the volume along each axis into two equal parts. The method recurses to

process the current octant by defining three more cutting planes, and continues to

recurse to an arbitrary depth. The procedure below illustrates the subdivision process.

It accepts as input a test point (x, y, z), the origin (xO, yO, zO) and size (sizex, sizey, sizez)

of the volume to be subdivided, and the current depth of decomposition. At each level

of decomposition, the procedure identifies the quadrant that contains the test point,

according to the convention in Figure 2-2. Notice that this method works equally well

with cubic volumes whose dimensions are a power of two.

I. ... .-
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function Octant (x, y, z, xO, yO, zO, sizex, sizey, sizez, depth)

cutx = xO + sizex/2

cuty = yO + sizey/2

cutz = zO + sizez/2

0=0

if x >= cutx then

xO = cutx
Q=Q+4

endif

if y > = cuty then

yO = cuty
0=Q+2

endif

if z > = cutz then
zO = cutz

0=0+1

endif

print 0 /1 or save it in some form or fashion /

if depth ( max then

Octant (x, y, z, xO, yO, zO, sizex/2, sizey/2, sizez/2, depth + 1)

endif

end Octant

As another example of the interpretation provided by an octal-tree representation,

consider the case in which an object is added to a scene represented by an octal-tree. It

might be desirable to know whether a given point in the new object is contained inside

an octant which is empty or is already occupied by another object; this condition of two

objects occupying the same space is reason for further decomposition of that space. To

make that determination, traversal of the octal-tree is necessary, and continues until a
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leaf node is reached. At that time, it is possible to tell whether the octant corresponding

to that node is empty or occupied.

As an illustration, assume that we have an object [a single point (x,y,z)] which is to

be added to an existing object space represented by an octal-tree. We are interested in

whether a collision will occur (whether the point would share a node of the tree with

another point). If so, then that node would need to be decomposed further, since we

assume that each point must occupy a unique sub-volume. Thus, given the coordinates

of the new point, we would like to be able to find a leaf node which is either empty or

already occupied by a point. This can be done by expressing the coordinates of the

point as binary numbers, as described earlier. As an example we will use the point

(15,453,890) and assume an enclosing volume with urigin (0,0,0) and dimensions of

1024. The coordinates of the test point are expressed as ten-bit numbers as follows.

decomposition level
(tree depth)

X 0000001111 15
Y 0111000101 453
z1101111010 MQ

Q 1323115656

The decomposition can be seen all the way down to the "unit volume" level by

grouping the corresponding bits for each coordinate into ten three-bit numbers, each
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corresponding to the volume as pertains to the convention in Figure 2-2. For this

example, the decomposition would proceed in the order of volume 1, then volume 3 of

1, then 2 of 3 of 1, and so on for sub-volumes 3, 1, 1, 5, 6, 5, and 6. This establishes a

road-map which can be used to search down through the octal-tree, to the maximum

depth if necessary, until a leaf node is found. This node may be empty, in which case

the point could occupy the corresponding volume. However, if a point already existed

in the volume, further decomposition would be required until such time as each point

had its own volume. Using this methodology of decomposition down to the single unit

resolution, a problem naturally arises when two identical points exist. In such a case, an

infinite number of subdivisions would theoretically be necessary before each point

could occupy a unique volume. There are basically two methods of handling such a

situation: the first would involve signalling an error condition if two points were

identical (the situation would not be allowed), while the second would involve the

detection of identical points followed by the inclusion of appropriate information in the

data base flagging the special condition. The first alternative seems to be unduly

restrictive on the flexibility of a modelling program, while the second involves tradeoffs

both in storage space and processing time (when a view of the scene is interpreted). It

will be shown later that a proper choice of the halting condition for decomposition can

make such a situation unlikely.
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Given a node in tie octal-tree and the coordinates of the enclosing volumnes

origin, the boundaries of the volume corresponding to that node may be determined

very simply [11]. The dimensions of the sub-volume (D) are each S*2n , where S is the

size of the largest enclosing volume, and n is the level in the tree at which the node

resides. The origin of the sub-volume can be determined from the position of the node

within the tree. For instance, in Figure 2-2 the node marked A is mapped 0-1-4 in the

octal-tree (that is, node 4 of node I of node 0 of the tree). This corresponds to the

numbering convention for the volumes as shown in the upper right corner of the figure.

Assuming dimensions of 1024 units, the coordinates of the origin of the sub-volume

may be calculated by the formula
n

Xmin X, (size/2)

1

Y . and Z . are calculated accordingly. X. means "the ith bit of the X part of therain mini

map" (most significant bit of the node position at each level). For the above example,

the node map may be viewed as

Q--XYZ
0--0 0 0
1--00 1
4--1 0 0

Then the origin of the sub-volume (Xmin Ymin' Zmin ) may be calculated as

X = 0*512 + 0*256 + 1*128 = 128
rmin
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Y min 0*512 + 0*256 I-0*128= 0

Z = 0*512 + 1*256 + 0*128 = 256
minl

Ihus, the origin of the node shown is (128, 0, 256), with size of 1024/2 , or 128.

2.3 Tree Traversal versus Explicit Sorting

The hidden surface removal problem typically involves a great deal of sorting.

Depending on the algorithm, all points in the scene are sorted in one or more of X, Y,

or Z order. This sorting consumes a great deal of computation time, and it has been

suggested that future research into the hidden surface problem concentrate on better

methods of sorting [20]. Binary decomposition of a scene woud result in a decomposed

scene which would require no explicit sorting of the object points. This is due to a

characteristic of the decomposed scene; if the eight main octants of the volume (first

level of the octal-tree) are sorted in order of nearness to the viewer, this ordering of the

octants defines the traversal order of the octal-tree at all levels. This statement points

out an essential characteristic of binary decomposition, and should be discussed in

detail to demonstrate its validity.

Consider the situation shown below, with four quadrants in two dimensions. The

discussion for this simplified scenario applies equally well for the three dimensional

. .. .- -
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case of eight octants.

\r I

IN

45*

From position A, quadrant 4 has top priority, quadrants 2 and 3 are next (with equal

priority), and quadrant 1 has the lowest priority. This ordering is based upon the

distance from the eye position to the center of each quadrant. Situations in which

quadrants have equal priority happen only when the viewing angle is a multiple of 45

degrees; in these cases there is no overlap between those quadrants, and an arbitrary

selection of one quadrant over another will produce a correct view. Thus, from position

B, the quadrant-pair 2/4 takes priority over pair 1/3, though within each pair it does not

matter which quadrant is treated first. Going back to position A, though, it is important
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to understand the relationship of any objects in quadrant 4 to those in quadrants 2 or 3,

since that relationship forms the basis for establishing the priority order of objects based

solely on traversal of the octal-tree. Assuming for the moment that objects are single

points, it is the case that every object in quadrant 4 is either in region I or 11, separated

as shown by the diagonal line). Every object in region II is closer to the eye than any

object in quadrants 2 or 3. Note that the line separating the two regions will not always

intersect the corners of the quadrant; it depends on the viewing angle. It is possible,

however, that objects within region I are farther from the eye position than objects in

the other two quadrants. Consider Figure 2-3 which shows object A in the back corner

of quadrant 4 and object B in the front corner of quadrant 3. Object A is fanher from

the eye position than B, and would normally have a lower priority, except for its being

in a quadrant which has higher priority than B's quadrant.

" 1

__ _ _ _ _ _ _ __ _ _ _ _ _-
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Figure 2-3

Quadrant Sorting versus Explicit Sorting

Assuming a separation in object space between A and B of DX and DY, the distance

perpendicular to the viewing axis between A and B in image space becomes

DYsin(theta) + DXcos(theta)

where theta is the angle through which the eye position is rotated (in this case, in object

space about the Z-axis). This distance is of course a minimum when the two points

coincide in real space, and it increases as a function of the points* separation. Thus,

even though object B in quadrant 3 is closer to the eye than object A, the latter may be

drawn first, without sacrificing accuracy, because of the rcsultant separation. ]llis

..... --- " "" I L
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relationship is true of any objects within quadrant 4. Some of the objects may have

higher priority than those in either of quadrants 2 or 3, but. any objects which are

farther away are guaranteed to be separated in image space such that no incorrect

drawing could possibly occur. This reasoning points to the requirement for physical

decomposition. In order for the discussion above to hold true, an object must be

completely contained within a quadrant. With the assumption that points are objects,

that requirement is trivially satisfied. For polygonal objects, however, it is possible that

the polygons may cross quadrant boundaries. In such cases, the polygons must be

physically divided at the boundaries. The case for physical decomposition will be

examined shortly in more detail.

Of course, if there are several objects in quadrant 4, then some means of

prioritizing those objects must exist; this means that the quadrant needs to be

sub-divided at least one level further. The depth order relationship of these

sub-quadrants, with respect to the viewing axis, will be identical to that of the four main

quadrants; that is, within quadrant 4, sub-quadrants 1 through 4 will be ordered

4,2/3,1. This is another feature of binary decomposition; the symmetry of the

quadrants allows a generalization of the priority order based on the four largest

quadrants. As a result, any object within sub-quadrant 4 of main-quadrant 4 takes

priority over any objects in 2 of 4, 3 of 4, or I of 4, all of which take priority over the

9~Y~*~ ~t
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objects in the other three main quadrants. This establishes a traversal order fbr the

structure defining the scene; each node is processed (in order according to the main

level priority) by completely traversing its sub-tree, and within each sub-tree the same

strategy holds true. This "flattening" of the tree through traversal will yield a

prioritized list of the objects in the scene. The algorithm for the traversal is defined

below.

/* Assume: a list 'sort-order' which identifies the octants in priority order */

procedure Process (node)

for each octant in sort-order
if node[octant] is subdivided then

Process (nodefoctant])

else
if node[octanij is an object then

prioritized-list = prioritized-list + node[octant] /* + = catenation /

endif

endfor

end Process

With the scene decomposed such that each volume contains a very simple amount of

information (only one object), each object may be drawn as it is encountered in the tree

traversal process. This is essentially the same characteristic as the binary partitioning

tree of [4]. For a static scene, then, different viewpoints of that scene may be generated

simply by applying the necessary transfonrmations to the main enclosing volume and

. - -.. . .
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sorting the eight major octants in order of nearness to the viewer. Notice that just s a

list of values can be sorted in either ascending or descending order, so can the octal-tree

* 'traversal yield a list of objects prioritized in order of increasing nearness to the viewer or

distance from the viewer.

2.4 Complete Decomposition

In this paper, "complete" decomposition requires that only one object occupy any

octant in the subdivided object space. For purposes of discussion, we assume these

objects to be arbitrary convex polygons. This method of decomposition adheres to the

simplifying assumptions of the ?revious section, and results in a simple interpretation of

the polygons in the scene. As a result, the establishment of a priority ordering for those

polygons becomes simply a tree traversal. A decomposition philosophy of allowing

only one polygon per octant dictates that the polygons themselves may have to be

physically subdivided at the octant boundaries. This is necessary because the position

of a node within an octal-tree implies a priority ordering only for the polygon within the

node's boundaries, not for any portion of the polygon which might extend beyond the

boundaries. As a result, polygons must be "clipped" to fit completely within a

sub-volume. This physical decomposition of polygons illustrates one of the tradeoffs

between equal (binary) and unequal subdivisions. With unequal subdivisions, it might

4I
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be possible to subdivide the octant such that no subdivision of polygons is required.

This is because the unequal subdivision algorithm has a great deal of flexibility with

regards to where the cutting planes are placed (and in fact, if they are used at all for any

given axis). However, such flexibility is not characteristic of the binary decomposition

technique. It is likely that a polygon may intersect one or more of the cutting planes

which subdivide an octant. Each intersection of a convex polygon with a cutting plane

results in two new points and two new polygons (the old polygon in effect is discarded).

The process necessary to subdivide a polygon is in effect a three-dimensional

clipping algorithm. The polygon need be tested only against the cutting planes which

subdivide the volume, and not against the boundaries of the volume itself; this is

because any polygons inside the current volume are a result of applying the clipping

algorithm for the larger volumes which contain or border on the current volume.

Determination of an intersection of a polygon with a cutting plane is simple; the only

information required is the location of the cutting plane (e.g., the plane defined by the

equation X = 10), and the three-dimensional coordinates of each vertex in the polygon,

which in effect define the lines (edges) of the polygon. For elach edge of the polygon,

an intersection exists if the endpoints of the edge lie on opposite sides of the cutting

planes. If so, the coordinates of the intersection point are calculated based upon the

DX, DY, and DZ of the edge. Each edge is tested in this inann-r, until twso intersection
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points are found. Using these new points, two new polygons are defined, and each

polygon is then tested against any remaining cutting planes. For the simplest case

(convex polygons), the worst case for a subdivision is nine new points created and seven

new polygons (see Figure 2-4), all of which must be maintained in the data structure

describing the scene. These new polygons are hereafter referred to as "artificial"

polygons.

As the polygons become smaller through successive division, truncation or

ioundoff errors could result in anomalies in the subsequent depiction of the surface

represented by the large polygon, due to differences in the plane equations for the

smaller sub-polygons. This would tend to manifest itself in the form of surface normals

with slightly different directions, and could result in shading anomalies.

To gather statistics on this problem, a test program was developed to take an

arbitrarily-oriented polygon and decompose it through five or more levels (the

octal-tree became five or more levels deep). This resulted in a large number of new

points and polygons. Each polygon was processed to calculate a unit normal vector for

the polygonal surface; the cross product of the first two edges was the convention. Each

surface normal was compared against the normal of the original polygon by computing

the angle between the two vectors (arccosine of the dot product). It was found that the

I- ~ ' ~
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error averaged 17 degrees, with a maximum of 36 degrees. The coordinates were

represented as "single precision" floating point numbers with 24 bits of fraction.

While the actual error values aj e not significant in themselves, it points out that a

large amount of subdivision results in polygons so small as to produce surface normals

of wide variation. A better way of handling this condition would be to save the

appropriate information for the original polygon, then have all sub-polygons point to

that information. This information would most likely include three vertices of the

original polygon (for calculating the surface normal) and any shading or surface detail

information. Such sharing of information between polygons would also be

advantageous from a data storage point of view. However, the problem of the large

number of "artificial" points and polygons remains. Crowded scenes which result in

many collisions within octants would consume a great deal of storage space, as well as

processing time to access the additional structures.
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Figure 2-4

Division of a Convex Polygon by X-Y-Z Cutting Planes

Also, for situations in which the scene complexity is high (intersecting polygons or

simply shapes with common faces), an infinite number of subdivisions would be

necessary to satisfy the halting condition. Handling such complex relationships requires

a compromise in which the subdivision halts after a pre-defited number of iterations,

and special information is saved which flags the octant as containing more than one

polygon. Better still, it would be desirable to determine surface intersection or common

faces as soon as possible, to avoid any pointless decomposition. This could save a

significant amount of octal-tree storage space, as well as processing time. In cases where

octants did contain one or more polygons, special logic would have to be invoked for

L
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each view of the scene in order to prioritize the shapes. All in all, the requirement of

one polygon per octant seems to be too restrictive, for even though it implies a simple

"traverse and draw" approach to the octal-tree processing, there will exist so many

artificial polygons in the scene that the computational savings from the simple

* interpretation will be engulfed by the processing dictated by the additional objects in

the scene.

2.5 Centroid Decomposition

One response to the problems with complete binary decomposition is to greatly

simplify the halting condition for the decomposition process; a scene is considered to be

properly decomposed when each octant contains not one polygon, but one "centroid"

for a shape in the scene. The term "centroid" refers to the center of the polygon, and

could be viewed simply as the center of mass for the polygonal vertices. The location of

the centroid is actually arbitrary, and need not be consistent among the polygons in a

scene. In fact, the method of choosing a centroid only affects efficiency, since careful

selection of a centroid for each object could affect the amount of decomposition

required Even for the simplest centroid selection method, however, centroid

decomposition implies a much smaller amount of subdivision, both with regard to the

enclosing volume and with regard to the objects themselves. In fact, no polygons must

4
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be physically subdivided. The decomposition process is guaranteed to halt as well,

except in such cases as the user decides to define two or more polygons with the same

centroid. (Such situations are disregarded in this analysis).

A result of decomposition based on centroids is that the shapes may extend past

octant boundaries. One tradeoff of this centroid method is that the octal-tree is not as

easily interpreted as with the previous method (one polygon per octant). In fact, this

more complex interpretation is a very important characteristic, because it forms the

basis for anomalies in the prioritization when the octal-tree is traversed. Such

problems, however, are surmountable. The algorithm for performing the centroid

decomposition is presented below as a pidgin Algol procedure which builds the scene

one object at a time (thus tailored to an interactive approach). A centroid is allowed to

occupy any octant of the defined object space, as long as that octant is not already

occupied and is not subdivided. A polygon and its centroid are associated with the

same node in the octal-tree.

/0 In this routine, a "shape" is a data type containing a centroid and °/

/0 a number of polygons. The centroid is defined as a triple (x, y, z) /

procedure AddShape (shape, x, y, z, size, node)

centroid = shape.centroid

xmid = x + size/2

ymid = y + size/2

Aim-2
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zmid = z + size/2

/ The octant number can be expressed as a three-bit number, with bit 0 */

/* representing the Z-axis boundary, bit 1 the Y-axis boundary, and bit 2 /

/" the X-axis. Each bit is set (by additions of powers of two) depending /

/* on whether the point is past the midpoint boundary of the volume with /

/* origin (x,y,z) and dimensions 'size'. "

octant = 0
if centroid.x > xmid then

octant = octant + 4

x =xmid
endif

if centroid.y > ymid then

octant = octant + 2

y = ymid

endif
if centroid.z > zmid then

octant = octant + 1

z = zmid

endif

/" If node is empty, go ahead and add the shape. /

if node[octant] = 'empty' then

node[octant] = shape

else

/ If node is already occupied, divide the octant and re-process both shapes. /

if shape? (node[octant]) then

new-node = MakeNode

AddShape (shape, x, y, z, s/2, new-node)

AddShape (node[octant], x, y, z, s/2, new-node)

node[octant] = new-node

else

/0 Node is subdivided; RECURSE /

~7.T 27
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AddShape (shape, x, y, z, s/2, node[octant])
] endif

'. Iend AddShape

2.5.1 Problems with Centroid Decomposition

Using a halting condition of one centroid per octant, the sorting of the eight major

octants of the enclosing volume and the subsequent traversal of the octal-tree in effect

performs a priority sort of the shapes based on the centroids. Using the octal-tree to

accomplish this prioritization provides a savings in computation time over a simple sort

of all the centroids in the scene. Traditional sorting methods require time anywhere

from 0(N2 ) for a bubble sort to O(NlogN) for a merge sort or O(log' N) for Batcher'sr

method [121, where N represents the number of objects being sorted. (lt should be

pointed out that Batcher's method requires O(N) processors.) Traversal of an octal-tree

can be done in linear time O(N'), where N' is the number of nodes in the tree. The

relationship between N and N' can be important, since for an octal-tree the ratio of

empty nodes to nodes containing objects is usually greater than 1:1. In practice, the

ratio will depend both on the separation between the centroids of the objects in the

scene, and on the positions of the centroids within the enclosing volume. Obviously,

the ratio should be as low as possible in order to take advantage of the linear growth

characteristics of octal-tree traversal.
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One important difference between sorting and octal-tree traversal is that the

traversal can be used in a "stream" or "producer-consumer" mode. That is, the

traversal occurs in priority order and need not finish before the information from the

traversal is used. Even with Batcher sort, the order is not guaranteed to be correct until

the final merge takes place. Generally speaking, however, the first non-empty octal-tree

node encountered in the traversal is guaranteed to have top priority, and subsequent

non-empty nodes can be processed as they are encountered. Thus, the maximum time

necessary to produce the first object from the octal-tree is O(q), where q is the

maximum depth of the tree.

There is another important way in which the use of an octal-tree is not completely

analogous to the situation of sorting the centroids of all shapes in a scene. The halting

condition for centroid decomposition merely requires a centroid to be alone in an

octant; it does not imply anything about the relative positioning of shapes whose

centroids are in different octants. For instance, Figure 2-5 shows the situation (in two

dimensional projection) in which shape A (whose centroid lies in quadrant 4) and shape

B (in quadrant 1) is viewed from the eye position shown. According to the quadrant

sort, quadrant 4 has a higher priority than quadrant 1, yet if the centroids were sorted,

shape B would have a higher priority than shape A. Since the shapes are drawn

according to the priority ordering of the quadrants, it is conceiva5le that an crroneous

Ie
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picture could result, meaning that some shapes behind others might appear to be in

front.

ii

I I

3 I

A B

Figure 2-5

Centroid Sorting versus Quadrant Sorting

2.6 Coupling of Shapes

As mentioned above, prioritizing the scene by traversing an octal-tree can

conceivably cause the hidden surface algorithm to produce an erroneous picture. This

is due to the fact that the centroid's position in the scene (its position in the octal-tree)

does not contain any information about the shape's size, orientation, or prokimiky to
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other shapes. Such information is extremely important because in many cases the

relative position of two centroids is simply not enough information on which to base a

priority decision. Problems in scene depiction arc characteristic of the use of ceniroids

as a basis for priority ordering, and have nothing to do with the use of an octal-tree or

object space decomposition. Figure 2-6 illustrates a simple situation (ill two

dimensions) in which the centroid for shape A is closer to the viewer than the centroid

for shape B; however, shape B should actually be drawn as being "in front" of shape A.

In such cases, more sophisticated depth testing must be performed in order to correctly

draw the objects. Such testing can be very time-consuming, and must be minimized in

order to hasten the processing of the scene; situations requiring the additional

processing should also be the exceptional case rather than the rule. For this reason, we

must be able to determine if two shapes are logically "coupled" to each other.

,
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A

8

6

I

B A

Figure 2-6

Problems with Centroid Snrt

Coupling denotes a condition in which the hidden surface algorithm must

consider not only the centroid priority ordering for any given view, but must perform

an additional test which directly compares a shape against any other shapes to which the

shape is coupled. Scene definition would thus involve an algorithm for determining

and flagging coupling, and the tree traversal process would "uncouple" shapes as

necessary. This uncoupling process could cause shapes to be drawn out of order in

relation to the centroid priority sort. However. no additional processing is necessary

(other than the test). One shape merely "cuts in line" ahead of the others.

4
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Technically, it would be possible to completely couple a scene so that no sorting

would be necessary. Complete coupling establishes tests between each pair of objects;

for N objects in a scene, the combinatorial C(N,2) yields the number of tests which

must be performed to determine the priority ordering for the scene. This is O(N2 )

complexity. It is likely that objects sufficiently removed from one another could be

drawn using a simple centroid depth test. So, the choice of an algorithm to determine

and resolve coupling could greatly affect the computational time required to resolve

ambiguities. Any coupling algorithm would seem to consist of two sub-problems: the

determination of situations in which coupling is necessary, and the formulation of a fast

and effective test for deciding which shape should appear "in front" of another.

2.6.1 Determination of Coupling

A two-dimensional situation which dictates coupling is illustrated in Figure 2-7a;

the situation in three dimensions is analogous. As shown in the figure, coupling exists

in the situation in which the centroids are equidistant from the viewer, AND there is

overlap between the shapes. Overlap can be defined simply as the situation in which

any line drawn from the eye position to a vertex of one shape intersects an edge of the

other shape. In such situations, it is possible that if the shapes are rotated slightly in the

plane of the paper, one centroid will be closer to the viewer, while in fact that shape
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should actually be of lower priority than the other shape (Figure 2-7b). In fact, this is

the same situation as with the objects in Figure 2-6. Stated another way, if two shapes

have centroids equidistant from the viewpoint and one shape cannot be arbitrarily

selected over the other without causing an incorrect rendering of the scene, then

coupling exists. Clearly this is the case in Figure 2-7a, since arbitrary selection of shape

B over shape A will result in a correct view (drawing in a front-to-back order), but

selection of shape A over shape B will not.

(a) --

II

A

(b) 7-

I I
I I

B A

Figure 2-7

Coupling Necessary when Overlap Exists

i,
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1lhe tricky part of the coupling problem is that it is completely dependent on the

viewpoint selected. If coupling exists for any viewpoint, it should be flagged as such

and an effective test must be devised for resolving the confusion. In three dimensions,

the problem is complex because it may be the case that for an arbitrary two-dimensional

projection of two shapes, coupling appears to be in order. Yet, as seen in Figure 2-8,

another projection shows that coupling is actually not necessary because the shapes are

; I separated in space enough so that the centroid priority ordering is sufficient.

A A

y

z z. x
coupling indicated from this no coupling from
viewpoint this viewpoint

Figure 2-8

Coupling Depends on Viewpoint

Since it is desirable to minimize coupling, it would be helpful if the algoritlhn

i l . = i , ' - ••
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could eliminate any unnecessary coupling. An ilgorithm for determining coupling in

three dimensions would be: project each polygon onto a segment along the line that

connects the two centroids. If the two segments overlap, than coupling exists between the

polygons. An implementation of this algorithm will now be presented for discussion

purposes later in this section.

For the two shapes in question, define an axis which connects the two

centroids. Translate the axis and rotate it so that the first centroid is at the

origin and the axis connecting the centroids is parallel with the X axis. The

algorithm for determining the transformation matrix is presented below,

and is based on Figure 2-9 below.

.4-
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II
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Figure 2-9

Rotations and Translations for Centroid Axis Alignment
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function Get-Matrix (p1 p2) returns Matrix
dx = p2.x - pl.x
dy = p2.y - pl~y

dz = p2.z - pl.z

di = sqrt (dx~dx + dy*dy)
sinl dy/dl

cosi dx /dl
d2 = sqrt (dzdz + dl dl)
sin2 = dz/d2
cos2 =d1/d2

matrixi = Translate (-pl.x, -ply, -pl.z)
matrix2 = Ratate-Z (sin 1, cosi)
matrix3 = Rotate..) (sin2, cos2)

/* The magical operator *denotes matrix multiplication *

return (matrixi *matrix2 *matrix3)

end GetMatrix

Once the proper matrix is derived, transform all points for the shatpes. That

being done, put the X-components of each point through a "min-max" test.

If it is the case that overlap exists between the shapes (the min or max extent

of one shape falls between the min and max of the other), then coupling is

necessary. Figure 2-10a illustrates a case in which coupling is dictated,

while Figures 2-10b and 2-10c illustrate situations which show no need for

coupling.

_____I.
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(a) (b) (c)

Figure 2.10

Three Coupling Situations

For any given shape, all other shapes need not be tested for coupling; it is likely

that shapes may be quickly eliminated from consideration by first using a main-max test

to determine if two shapes are sufficiently removed from one another. This involves

bounding each shape in a box defined by its minimum and maximum values in X, Y,

and Z. If the two boxes do not intersect, then no test for coupling need be performed.

Such a test is extremely fast, and shapes may be eliminated in parallel. In fact, it would

probably be useful to perform a secondary level of decomposition while defining a

scene, one that keeps track of which shapes cross into which octanLs. Only shapes

which extend into the same octant need be considered for coupling to each lher. Once

Mo -, -~
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the scene is completely defined, this secondary information would be discarded.

2.6.2 Growth in Complexity

One area of considerable concern is the complexity growth of the coupling in a

scene as the number of objects increases. As mentioned earlier, it would be possible to

couple all shapes in a scene, resulting in an O(N 2 ) growth in the processing required to

decouple shapes. In scenes with a very large number of objects (a representation of

New York City, for instance), one would hope that the amount of coupling grows in a

near-linear fashion with respect to the number of objects. In fact, this is the case,

assuming no penetration of shapes. The definition of coupling implies a proximity

condition which must be satisified before coupling is possible. Taking the min-max test

one step further, then for two shapes to be coupled, there must be intersection of two

enclosing spheres (where the center of each sphere is the shape's centroid, and the

radius is the maximum distance to any of the shape's extremities). This suggests that

the optimal choice of centroid is that which minimizes the radius of this sphere.

For scenes containing objects of somewhat near the same volume and no

penetrating shapes, there are a limited number of shapes which can penetrate a given

shape's enclosing sphere. Thus, as the number of objects in a scene increases, so does

the likelihood that a given object will lie outside the cncto .ng sphcre o'another object.
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As a result, it is unreasonable to consider a scene in which every object in the scene is

close enough to every other object to require coupling, at least for a large number of

objects. It is only in such a case that N2 growth would appear. The coupling

complexity is more likely to resemble some sort of arbitrary three-dimensional network

or matrix in which each shape is potentially coupled to all shapes immediately around

it, but not to any shapes "outside its reach."

, i2.7 Decoupling of Shapes

The second phase of the coupling problem involves the determination of a fast

and effective test for resolvir.g the conflict between two coupled shapes. Several

courses of action are available, but the underlying concern is one of speed. Any test

must involve a minimum of computation so as to determine as rapidly as possible each

shape's relative priority. The simplest method might be to find a point on one of the

shapes which would be tested against a point on the other shape; the relative

positioning of those points would determine the priority for the two shapes. Another

method might involve the specification of a surface normal for one of the shapes' faces.

This surface normal would be calculated for each view, and its direction (in the eye

coordinate system) would determine the priority ordering for two shapes. For instance,

in Figure 2-11, the polygon labelled 'A' is selected as the refcrence polygon. When the

A_ _ _ _ _ _ _ _ _ _ _ _ Ma__ V"1- 4
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view for the scene is constructed, the surface normal for the polygon is calculated. If

the normal vector has a component (usually Z, by convention of the eye coordinate

system) which points toward the eye position, then the shape containing polygon A

should appear to be behind the other shape. Otherwise, the converse is true.

surface normal

1 Z component

A Y

Figure 2.11

Establishment of Reference Polygon to Resolve Coupling

Another method found to be particularly fast and effective involves the

establishment of a reference vector which "looks between" the shapes in question.

Consider two shapes, S1 and S2 . When testing for coupling as discussed in section

2.6.1, the first shape (S1 ) is always transformed in the coupling-test coordinate system

such that its centroid lies at the origin. S, is transformed and rotated so that its centroid

lies on the X-axis of that same coordinate system. If coupling exists, it is because of the



- 54 -

overlap illustrated in Figure 2-10. If a line is defined by connecting the XRx point of

S1 with the Xmin point of S2 , this defines a viewing line which effectively looks

"between" the two shapes. Viewing the two shapes along this line results in an overlap

of only two points. Changing the viewing angle slightly would mean that one of the

two shapes was definitely in front of the other. In order to tell which side of the line the

eye position is on, the line connecting the two points is made into a vector, oriented

such that it has a negative Z component, referenced to the coupling-test coordinate

system. Figure 2-12 illustrates two situations where shapes are coupled, and shows the

appropriate coupling vector for each situation.

The code below assumes that coupling is indicated by a triple (X1 X2 S), where

X1 and X2 define Lhe coupling vector and S points to the other shape. This code sets

up the triple for each shape such that the coupling vector has a negative Z component.

/ let A = X S ,B = Xmin of S2 (coupling-test coordinate system) "

if A B then

couple, = (A B 1 S2 )

couple2 = (B"1 A-1 S1 )
elsecouple

1 = (B-1 
A-' S2 )

couple2 = (A1 B] S1 )

endif

A" and Bl represent the points transformed back to the object space coordinate
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system. Thus, the output from the test for coupling is a pair of triples (couple1 and

couple 2 ) to be associated with SI and S2 , respectively. Each triple (P1 P 2 S) contains

the vector P1 P2 and a pointer to the other shape.

x /

Figure 2.12

Coupling Vectors

Decoupling of two shapes is done as a shape is encountered in the octal-tree

traversal. When shape S1 is processed, decoupling must first take place to insure that

no shapes have priority over S . Upon encountering the coupling triple for S2 9 a test

must determine the relative priority of S] with respect to S,. Assuming a coupling

triple (P1 P2 S2)' S1 is behind S2 ifthe vector P1  has a negative X component (eye

!1 coordinate system). Otherwise, S1 is in front of S2. The priority of S1 with respect to

S2 depends on whether the objects in the scene are being drawn back-to-front or

front-to-back. The Behind? function below illustrates the sinple decoupling test.

i
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P Returns true if shape # 2 is between shape # 1 and the eye position. /

boolean function Behind? (triple)

P1 = triple.pl

P2 = triple.p2

return (P2.x < P1.x)

end Behind?

This chapter has dealt with object space decomposition as a way to establish a

priority order among objects in a scene. The object space is decomposed until each

centroid occupies a unique sub-volume of the space, and a traversal of the octal-tree

establishes the ordering. Basing the decomposition on centroids ca~i result in anomalies

in the priority order, so a method of coupling/decoupling objects is used. Centroids

can be chosen so as to minimize the coupling for the objects in a scene. This results in a

method of traversing the octal-tree, with possible "detours" for the decoupling of

shapes.

AI
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Chapter 3. Hidden Surface/Line Determination

Hidden surface removal involves the establishment of priority among objects in a

scene, to determine which objects hide other objects, along with the calculation of

visible portions of the scene. Chapter Two dealt with a method for establishing a

priority ordering for objects based upon object space decomposition; Chapter Three

concentrates exclusively on algorithms for calculating the visible portions of a scene,

given a priority ordering for the objects in the scene. Three algorithms are presented in

detail. The purpose for exploring each one is to evaluate the algorithms from a parallel

processing viewpoint. Compared with sequential processing, parallel processing could

either perform similar work in a shorter time (removing hidden lines faster), or perform

more work in the same time (adding shading and/or shadows to an existing capability).

The first algorithm, intended for use on raster scan displays, conceptually uses

two quad-trees [7, 9, 10, 11], one to represent the display area and the other to represent

a polygon to be drawn. Binary subdivision is used to partition the display area into

quadrants which are either completely full or completely empty. By merging the two

quad-trees correctly, a polygon may be added to the display such that the hidden areas

of the polygon are not displayed. The second algorithm is purely geometric. With the
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aid of a priority list, the polygons are tested against each other for inters..cting edges in

order to determine visible line segments, which are then displayed. While being rather

brute force, the algorithm offers a considerable amount of concurrency. These two

algorithms both have problems in complexity growth and/or response time, so the third

algorithm combines features of the two previous algorithms in an attempt to alleviate

those problems. This third algorithm uses a quad-tree to divide the display into

manageable quadrants, each of which is either empty or populated with polygons.

Polygons are physically subdivided at the quadrant boundaries and the priority order

of the original polygons is maintained. Each quadrant is processed in parallel using the

geometric algorithm. A complexity analysis for both time and computation is presented

for each algorithm.

Test results from studies nn on a parallel processing simulator [81 are also

presented. The simulator uses a simple instruction count as the measure of

computational work, and is able to keep track of a number of parallel tasks. These tasks

exhibit a hierarchical ancestry. Two terms used in the discussion of the test results are

important: critical path and parallelism factor. The critical path is the longest path in

the execution hierarchy (measured in the number of instructions), and can be viewed as

the fastest response time for the task, assuming no limit on the number of tasks that can

execute concurrently. The patallelihm factor is the averagc nuiziber of tasks that are

.. . .. . .. . ..4
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active, and is computed by dividing the total number of instructions by the critical path.

This gives a measure of the speedup that could be obtained by using a truly parallel

machine, relative to a sequential machine executing the same algorithm. Further

discussion on the simulator may be found in Appendix A.

3.1 Quad-Tree Algorithm

3.1.1 Raster Scan Displays

Raster scan and bit map displays can be used as line drawing displays, but more

often they are used to cover entire polygonal areas rather than '-mply outline them.

Among other things, this allows for the continuous shading of objects and the use of

colors to distinguish objects on the screen. Using such a display, a "correct" picture is

easily generated if the priority ordering of the polygons is known. This is accomplished

* using a painters' algorithm [16], in which the polygons are displayed in reverse order,

from back to front. Polygons which should appear to be nearer to the viewer do so

because they are drawn over earlier polygons. The algorithm involves simple scan

conversion of the polygons, and any scene can be rendered in linear time with respect to

the number of objects in the scene. It is used in this thesis as a basis for comparison

with the techniques which follow.

-1.
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3.1.2 Quad-Trees

A quad-tree is a tree whose leaves represent areas of a picture: each node of the

tree corresponds to a unique area of the picture (Figure 3-1). A picture is considered to

be a square array of colored pixels, and each leaf of the quad-tree is labelled with the

color of the region to which it corresponds. By definition, no parent node may have all

its descendant leaves the same color, since the tree could be more compactly

represented by eliminating the descendants and coloring the parent. For pictures which

possess large contiguous areas of the same color, a quad-tree can offer considerable

storage savings over a two-dimensional array (a typical display memory, for instance),

because each leaf represents a block of color usually much larger than a single pixel

3.1.3 The Algorithm

The algorithm presented below conceptually uses two quad-trees to accomplish

hidden surface removal. One tree represents the display area and identifies those areas

of the display which are "occupied" by polygons. The other tree represents a polygon.

The roots of both trees correspond to the entire display area. By combining the trees,

the polygon may effectively be added to the display, and since the screen quad-tree

II
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contains the information about the state of the display, the merging of the quad-trees

may be done so that the polygon does not obscure any part of the existing display. The

polygons in a scene are processed in priority order, and as they are displayed, the areas

they occupy are added to the already occupied areas of the screen through the merging

process. The conversion of each new polygon to a quad-tree, followed by the merging

of that tree with the one representing the display screen (with the latter taking priority),

thus provides a technique for accomplishing hidden surface removal. Notice that if the

quad-tree for the new polygon took priority, we would essentially have the painter's

algorithm. However, because the screen quad-tree takes priority over the quad-tree for

the new polygon, the polygon -:an only appear in areas which are unoccupied at the

time of merging. Thus, a front-to-back display protocol is assumed for this algorithm.

The discussion which follows centers on methods for converting an arbitrary

convex polygon to a quad-tree, and on the process of merging two quad-trees to

accomplish the hidden-surface removal. This separation of functions

(creation/merging) is not really necessary. In fact, the implementation of the algorithm

as two functions is inefficient since it forces a sequentiality that is not inherent to the

algorithm. Presented last is a version of this algorithm which combines the two

functions into one which traverses/mutates the screen quad-tree as dictated by the

polygon to be displayed.

:t
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3.1.3.1 Converting Polygons to Quad-Trees

The reason for using a quad-tree to represent individual polygons as well as the

display area is to save storage space and processing time by representing relatively large

areas of the screen by a single node in the tree; the size of the area is implied by the

level of the node within the tree, and the location of the area is implied by the position

of the node (Chapter 2). Converting a polygon to a quad-tree creates a tree of

maximum depth q, where q is the base two logarithm of the screen size (assuming a

square display area). A quad-tree thus maps the input polygon to the display screen.

Hunter [9] accomplishes this conversion by combining an outlining algorithm with a

coloring algorithm. The outlining algorithm creates what Hunter terms a "roped"

quad-tree whose leaves define the perimeter of the polygon. The border leaves are tied

together using pointers so that the perimeter may be followed. The coloring algorithm

takes as input a roped quad-tree and returns a quad-tree which represents a solid-color

polygon. The time required to outline and color a polygon is O(v+p+q), where v is

the number of polygonal vertices, p is the largest integer not greater than the perimeter

of the polygon, and q is the maximum depth of the quad-tree.

In this thesis, we use a polygon conversion process which evaluates smaller and

smaller regions of the screen until each region can be a single color (an implementation
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is presented in Appendix B). Binary decomposition, in the Ihshion of the Warnock

algorithm, determines which areas of the screen are evaluated. Because each node of

the quad-tree corresponds to a unique region of the screen, there aUe no data

dependencies between sibling nodes (nodes on the same level of the tree); this implies a

possibility for processing each quadrant of the screen in parallel. The parallelism

generated will resemble the resultant quad-tree.

The algorithm recognizes only three possibilities for any quadrant: completely

full, completely empty, or unknown. Leaves in the quad-tree exist only for the first two

cases, and the quadrant must be subdivided for the third. In subsequent discussion the

terms full/occupied/black and empty/unoccupied/white are used interchangeably. A

black quadrant can exist only if the polygon completely surrounds the quadrant, while a

white quadrant exists only if there is no intersection between the areas of the polygon

and quadrant. Any other situation is termed unknown and requires subdivision of the

quadrant. Figure 3-2 illustrates several polygons in relation to a quadrant, along with

the appropriate "label" for the relation. Subdivision proceeds only as far as the single

pixel level.

The conceptual simplicity of allowing only "black or white" quadrants belies the

complex calculations required to make the determination. Si!-aulation results for the

___________,_,, .... ,,_...___ ... _"-___,- _______
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quad-tree algorithm will be presented, and it is important to note that the majority of

work done by the algorithm aries from this black/white determination. The discussion

which follows is geared towards the implementation used in that simulation study.

Assuming a convex polygon, a quadrant can be "black" if and only if each corner

of the quadrant is inside the polygon. This is the same as saying that the polygon

"surrounds" the quadrant. An important computation for determining a "black"

quadrant tests if a point (x,y) is contained within the boundaries of a polygon. Given a

point known to be inside the polygon (see below), the test point is inside the polygon if

and only if for each line in the polygon, the test point and the known inside point are on

the same side of the line. This test is accomplished by plugging the coordinates of both

points into the formula Ax + By + C (which is the leic hand side of the line equation).

The points are on the same side of the line if the resultant values have the same sign.

Calculating a point known to be inside a convex polygon is a straightforward

calculation, as shown in Figure 3-3. Given two edges of a polygon which share a vertex,

it is simply the midpoint of the line joining the midpoints of the edges. This point need

be computed only once, and can be stored as part of the polygon description.

Determining whether a quadrant is surrounded by a polygon can be done in 0(v) time,

v being the number of polygonal vertices.

*1
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Calculation of a Point Known to be Inside a Polygon

If a quadrant is "white," it is because the polygon and quadrant are disjoint; that

is, there is no intersection between the two areas. However, there is a distinction

between "simple" and "complex" disjoint situations. The simple case can be easily

determined with a "min-max" test between the quadrant and the minimum enclosing

rectangle for the polygon. Figure 3-2b illustrates such a situation. Assuming that the

description of that enclosing rectangle is stored as part of the polygonal information,

there is an upper bound of four comparisons necessary to determine the simple disjoint

case. The complex situation requires considerably more computation, and can be

described as occurring when: (1) all polygonal vertices lie outside the quadrant, and (2)

no intersections exist between the polygonal edges and the quadrant boundaries. See

Figure 3-2g for an example. This computation is expensiv~e because there is an upper
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bound of 0(v) simultaneous linear equations which must be solved to verify an absence

of boundary intersection.

Because of the complex computations necessary to determine a complex disjoint

situation, several intermediate situations are recognized, each of which are "unknown"

and require subdivision. This provision for intermediate cases is done because it is

desirable to find out as soon as possible whether subdivision of the quadrant is

necessary, and early determination of an "unknown" situation can avoid unnecessary

computation. Such situations are illustrated in Figures 3-2(c-0 and are presented in

order of increasing computational requirements. Assuming the quadrant is not "black"

and not a simple case of "white," then if any quadrant corner is inside the polygon's

boundaries (Figure 3-2c), the situation is "unknown." This case is available at no extra

cost since each corner is tested anyway to determine a "black" situation. Next, if any

polygonal vertex is within the quadrant boundaries (a simple computation), then

subdivision is also dictated. Figures 3-2(d-e) illustrate two likely situations. Finally, it is

possible for all vertices to be outside the quadrant and all quadrant corners to be

outside the polygon, as shown in Figures 3-2(f-g). Here, intersections between the

boundaries distinguish between an unknown situation (Figure 3-21) and a complex

"white" situation (Figure 3-2g).

•ir ~ 72ZIZ~I~it,
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3.1.3.2 Merging Two Quad-Trees

Given a quad-tree which describes the current state of the display area, and

another quad-tree which describes the new polygon, tie two trees must be merged to

form a new quad-tree (in essence, this adds the new polygon to the display area.) It is

important to realize the different roles played by these two quad-trees. For the screen

quad-tree, there is no distinction between individual polygons; nodes are either

"occupied" by some previous polygon, or "empty" and available for display. The

quad-tree for the new polygon identifies those areas of the screen which the polygon

would occupy if alone on the screen, plus the color of the polygon (or the grey scale for

a monochrome display). As shown in Figure 3-4, the discovery of a "full" quadrant for

the new polygon might result in the consolidation of some quad-tree children nodes,

but the actual display will not reflect this result; the new polygon may appear only in

empty areas of the screen.

5<J



-70-

display uad-tree poly d-tree displayee

II

current screen polygon's area updated screen

Figure 3-4

Addition of Polygon to Display (Different Effects on Quad-Tree and Screen)

To merge the screen quad-tree and the new polygon's quad-tree, the two trees are

traversed in parallel, and the corresponding nodes of each tree are compared. Given an

"old" node from the screen tree and a "new" node from the new polygon's tree, the

action depends on whether the old node is a leaf:

If the old node is a leaf:

(a) If the old node is empty, the new node (whether leaf or sub-tree) takes

its place. The occupied leaves of the new node may be displayed on
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the screen.

(b) If the old node is occupied, nothing happens (it does not matter what

the new node contains).

Otherwise, if the old node is not a leaf:

(a) If the new node is empty, the old node remains intact.

(b) If the new node is occupied, then it will take the place of the old node

(since every empty sub-node in the old node will be filled in).

However, for display purposes, only the screen quadrants

corresponding to the empty leaves of the old node may be filled in

with the color of the new node. This is because the new polygon must

not "paint over" old areas of the display.

(c) Otherwise, both nodes are themselves trees, and the algorithm recurses

to process each node of the trees in parallel.

3.1.3.3 Combining Tree Creation with Merging

It is actually not necessary to separate the function of creating a quad-tree for

each new polygon from the finction of merging a new quad-tree with the tree for the

screen. This separation imposes a sequential nature on the processing which is really

" not inherent to the algorithm. Because both quad-trees arc iscmorphic (the tool uode

*1
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of each tree corresponds to the total screen area), it is possible to combine the two

functions. This results in a traversal of the screen quad-tree, such that at each level of

the tree, decisions are made that determine whether the tree is modified, left intact, or

traversed further (because a decision cannot be made). Modification of the tree should

be viewed as causing an update of the display.

This version of the quad-tree algorithm combines the tree-creation and

tree-merging functions by recursively processing nodes in the screen quad-tree. This

discussion distinguishes between the "quadrants" of the display area and the "nodes" of

the quad-tree which represent the display. The quad-tree is traversed and mutated

depending on the current state of each node and the situation between the polygon and

the quadrant to which that node corresponds:

If the node is a leaf and "occupied," then nothing happens since no part of the polygon

could appear in the corresponding quadrant.

If the node is a leaf and "unoccupied," then that quadrant is available to the current

polygon. Here, the algorithm tests to see whether the quadrant is "black or white", that

is, whether the quadrant either lies completely inside or outside the polygon.

(a) If the quadrant is "black," the quadrant is painted vith the color of

the polygon and the node is labelled as "occupied."

_____ I..
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(b) If the quadrant is "white," the corresponding tree node remains

"unoccupied."

(c) Otherwise, the quadrant situation is "unknown," so the algorithm

subdivides the node into four unoccupied nodes and then recurses for

the subquadrants.

Otherwise, the quad-tree node already is subdivided. The "black or white" situation is

still important:

(a) If the quadrant is "black," the unpainted areas of the quadrant are

painted with the color of the polygon and the quad-tree node is

labelled as "occupied."

(b) If the quadrant is "white," the quad-tree node remains intact.

(c) Otherwise, the algorithm returns a node which is a result of processing

the four sub-quadrants of the quadrant in parallel.

3.1.4 Test Results

In order to test the parallelism available in the combination version of the

quad-tree algorithm, a test case was constructed from twenty randomly placed

polygons. The test scene was processed on the LCODE simulator (see Appendix A) to

M1
-.. -
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gather statistics on (1) the overall efficiency of the algorithm, and (2) the parallelism

available in the algorithm. As with EPA mileage estimates for automobiles, these

statistics are useful only for comparison with the other algorithms presented in this

thesis.

The test scene was first evaluated using a simple painter's algorithm which

scan-converted each polygon in the scene. The screen was assumed to be 256 by 256

pixels. This method was strictly sequential and was used as a means of comparison.

Using the LCODE simulator as a processing yardstick, the painter's algorithm for the

twenty polygons required 64,079 instructions. This number could be decreased by

scan-converting each polygon in parallel, saving the pixel information, then sending

that information to the display memory in the proper sequence. The time to process a

scene using the painter's algorithm grows linearly as a function of the number of objects

in the scene.

The numbers for the quad-tree method were substantially higher, even

accounting for parallelism. The total number of instructions executed in processing the

scene were 8,638,688 with a critical path of 176,455. This gave a figure of

approximately 49 for the parallelism factor. Thus, even with the parallel processing

capability, the quad-tree method required almost three limes the processing time of the

has
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painter's algorithm.

Over the course of the testing, it was observed that the implementation of the

algorithm was deficient in its management of the quad-tree. As the nodes in the tree

were filled, no attempt was made to consolidate the children of any particular parent

node. This meant that if a parent node had four children leaf nodes that were occupied,

then the algorithm failed to eliminate the children and label the parent node as

occupied. The algorithm was modified to perform a test as recursion occurs, such that if

the four nodes of any sub-tree are occupied, then an occupied node (instead of the

sub-tree) is returned. Processing the scene with the modified algorithm produced some

interesting results. The total number of instructions decreased to 7,930,071 (a decrease

of eight percent); this meant that the algorithm did not have to recurse as far to

determine whether a node was occupied or empty. However, the critical path increased

to 218,592 (an increase of 24 percent). Thus, the modified algorithm provides a slower

response time even though the total work done by the algorithm decreases. When no

consolidation took p!ace, the quad-tree for the test scene grew to a size of 889 leaves.

The modification resulted in a tree with 568 leaves, and somewhat less than 20 percent

of the attempts at consolidation were successful.

4!

-mew



.76-

3.1.5 Computational Complexity

The quad-tree approach requires a great deal of computational work, being

roughly a function of the perimeter of the total screen area taken up by the polygons in

the scene, at each point in the processing sequence. At first glance, it might appear that

the algorithm itself is doomed to relative failure because of the recursion required to

rroduce a quad-tree down to the single pixel level. Arbitrary polygons have edges

which are predominantly slanted (as opposed to vertical or horizontal), meaning that

the algorithm must recurse to the single pixel level in order to process the perimeter of

the polygons. Thus, in effect, the quad-tree method emulates a Digital Difference

Analyzer (DDA) for processing the edges of the polygons. This could hardly be less

efficient; the algorithm streaks along when it finds large blocks of the screen which are

either empty or completely full, but processing the edges results in enormous amounts

of recursion. Significant testing is done at each level of recursion to see if a given node

should be either full or empty, and this processing time is completely wasted in the

event that more recursion is deemed necessary.

For the first few polygons in a scene, assumed to be spread across the screen in a

fairly random fashion, the quad tree will be at its maximum depth and fairly complex,

with the number of unit pixel leaves proportional to the total perimeter of the polygons.
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As more polygons are processed, the decomposed nature of the quad-tree will force

more recursion in order to access the information at those leaves. This will be in

evidence when two polygons overlap, and the algorithm has to fill in the area of the

later polygon without "crossing the lines" of any polygons drawn earlier. For these

situations, recursion will again occur down to the single pixel level, but when the

additional polygonal area is added to the quad-tree, it may be possible to consolidate

some of the leaves such that if all four children in a node are occupied, then the parent

'1 can be marked as occupied and the storage space for the children reclaimed. Such

consolidation not only decreases the storage requirements for the quad-tree, but it

-_ means that for all future polygons, recursion for an occupied quadrant goes no deeper

than the level for that quadrant. This implies that the processing requirements for a

scene will be considerable until such time that the screen area begins to fill up. There

will generally be a point in the processing when the tree ceases to grow and begins to

consolidate; at this point, the processing required to process additional polygons will

begin to decrease. At some hypothetical point, the screen may become so full (90-95%)

that processing additional polygons becomes considerably less expensive.

Of course, the number of polygons required to fill up a screen area is largely

dependent on the nature of the scene being depicted. A close-up view of a cityscape,

for example, may require relatively few polygons, since one or more of the polygons
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. may be close enough to the eye position to completely fill the screen. That same city,

when viewed from an eye position much farther away (from outer space, say, as

opposed to on the doorstep of one of the buildings), may occupy only a small portion of

the screen area. In such a case, there would be a large number of polygons lying "on

top" of one another or nearly so. It was decided to gather statistical data on the growth

of the algorithm's complexity, and to assume a pseudo-worst-case scenario of using

relatively small polygons and randomly placing them around the screen. The

methodology was to take ten arbitrary polygons, each less than one percent of the total

screen area, and for each iteration of the process, randomly pick one of the shapes and

randomly place it within the scr.'en area (some were placed partly off the screen so as to

simulate a need for clipping), until such time as a desired percentage of the screen area

was occupied. Because of overlap between the polygons, the number of polygons

required to fill the screen area to the desired degree grew as shown in Table 3-1 and the

corresponding graph.

f
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% full # polygons 100
10 30
20 68
30 117 0
40 163
50 224 % full 0

* 60 337 0
70 513
80 1136 S

90 2720 S

500 16oo
Table 3-1

Polygons Required to Fill Screen to Given Percentage
(Average of 10 Runs)

The next step in the process involved creating a quad-tree for each state of the

screen (nine quad-trees corresponding to 10% - 90% full). The random placement of

the polygons meant that "full" quad-tree nodes of various size would be randomly

distributed about the tree. It was then desired to know, for a screen that is full to a

given degree, how much processing time the next polygon would require. For each of

the nine quad-trees, statistics were collected on several randomly-selected,

randomly-placed polygons. The results are tabulated and displayed in Table 3-2 and

the associated graph.

!1
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100 *
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00

0 0
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% full work 50

0 102
10 100
20 92
30 87
40 82
50 76
60 69
70 62
80 46 : 100
90 33 % full

Table 3-2

Work Necessary to Process Polygon, Given Quad-Tree Full to Given Percentage
(Average of 100 Polygons)

These two pieces of information constitute a means for calculating the amount of

computation required to process polygon n, given that n-I polygons have already been

processed. Using n-I, we "lookup" the degree to which the screen area will be filled,

and for that degree of fullness, we lookup the amount of processing that the next

polygon will typically require. Calculating the complexity growth for the algorithm

then involves "integrating" the information under the curves by summing the
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II
processing requirements for each of n polygons and graphing the values. The resultant

curve is shown in Figure 3-5, and illustrates the rapid growth characteristics of the

algorithm for the early stages, followed by the levelling of the curve as the number of

polygons approaches 10000.

processing
time

# polygons odoo

4I Figure 3-5

Growth in Processing Time as a Function of the Number of Polygons
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lhese statistics provide a non-rigorous estimate of the complexity growth for the

quad-tree method, and show that the algorithm would most likely not be suited for a

rapid depiction of a very simple scene containing only a small number of polygons.

However, we should point out that we are not interested in such applications, for there

are quite a few methods suitable for such scenes. One consideration which offers

improvement to this algorithm would be the creation of a number of independent

processes at such time as the screen became full to a certain degree (probably above

75%). These processes would pre-process the list of remaining polygons, filtering out

any which would be completely hidden by any node in the quad-tree. A new process

could be started each time consolidation of nodes occurred, since that would indicate

that a larger quadrant had become completely occupied. For a large number of

polygons (greater than 2000) and a substantially-full screen, this could mean that the

computational growth could approach zero; that is, the processing of 10000 polygons

.might require no more processing (real) time than 9000 polygons, since the filtering

processes would be able to eliminate a large number of polygons before the main

algorithm had to look at them. This twist to the quad-tree approach smacks of the

Warnock algorithm, since the list of polygons to be processcd could be prematurely

terminated by the discovery of a quadrant which was Full ("surrotnder" polygon).

IJ
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3.2 Geometric Algorithm

3.2.1 Line Drawing Displays

Ij For line drawing displays, the second phase of hidden surface removal becomes

one of determining visible line segments, rather than visible polygonal areas. These

displays, such as stroke refresh and storage tube CRTs, are very inefficient at coloring

entire regions of the screen; because of this, only the edges of the polygons are drawn.

Unlike the painters' algorithm for raster scan devices, a line drawn on a refresh or

storage device will remain visible until explicitly erased. Any algorithm for a line

drawing display must take great pains to draw only those portions of polygonal edges

which will be ultimately visible to the viewer.

3.2.2 The Algorithm

The approach taken by this algorithm is a series of geometric calculations that

determine all points of intersection between the edges of all polygons in the scene.

With these points of intersection and a priority order for the polygons (derived from the

octal-tree traversal of Chapter Two, for instance), visible line segments may be

constructed and displayed. A great deal of concurrency exists in this algorithm, and in

the discussions below we atte;.,pt to take advantage of all aval able parallelism.

4
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The algorithm focuses solely on convex polygons, each of which is defined by

three or more edges. An edge is defincd by two endpoints. The term "old polygon(s)"

- is used to describe polygons which have previously been processed. They have a higher

priority than any polygons yet to be displayed, and thus a "new polygon" is not allowed

to obscure any portion of the existing display. This constrant implements a

front-to-back protocol for the polygons. An "invisible line segment" is a segment of a

polygonal edge which is obscured by a polygon of higher priority. For any given edge,

then, the invisible line segments caused by all higher-priority polygons can be masked

onto the original edge, and any remaining portions of the edge are completely visible.

Given a "new" polygon and a number of higher-priority polygons, the algorithm

calculates which edges (or portions of edges) of the new polygon are visible with respect

to the other polygons. This calculation involves a number of tests between the new

polygon and each "old" polygon to see if the edges of the new polygon and the old

polygon intersect, or if one or more of the new polygon's vertices lie within the

boundaries of the old polygon. If so, then for each edge in the new polygon, all invisible

line segments are determined based upon the points of intersection. Figure 3-6

illustrates the four general relationships which a polygonal edge might have with a

higher-priority polygon: (a) both endpoints are visible, but the line is.trisected; (b) one

endpoint is visible, and the line is bisected; (c) both endpoints ire in isible (thus for

.... ... .... ......4J
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convex polygons, the entire line is invisible): and (d) the line and the polygon are

disjoint. The points defining the invisible segments consist of either original endpoints

or points where edges intersect. A min-max test is useful for rapidly eliminating

polygons which cannot possibly obscure the polygon under consideration.

For each line in each successive polygon according to the priority order, the

invisible line segments resulting from the tests with the higher-priority polygons are

used to mask the original edge until the line completely disappears or until all invisible

line segments have been processed. Processing a large number of line segments can be

made more efficient in some cases by having, for each line of the new polygon, a flag

which marks the condition that the line is completely hidden by any polygon of higher

priority. In such cases, no further processing need be done for that particular edge of

the new polygon. In either case, for each line segment, there will ultimately exist zero

or more line segments which are visible; these can be sent to the display device for

plotting.

" 1
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(a) (b) (c) (d)

Figure 3-6

Possible Relationships Between an Edge and a Polygon

3.2.3 Complexity Analysis

This algorithm, like many algorithms that are conceptually simple, is rather brute

force in nature. Assuming the correct priority ordering output by the first phase of the

hidden surface algorithm, this geometrical method exhibits the O(N 2 ) complexity

growth of other algorithms such as Roberts [181. Each polygon is compared only with

those polygons which precede it (have higher priority); thus, for the Kth polygon, K-1

polygons must be compared. This means that the total number of comparisons for a

scene with N polygons would be [N(N-1)]/2 or O(N2 ). However, due to the

algorithm's simplicity, there are not many inherent data dependencies. As a result,

almost all computations may proceed concurrently. This is done by taking a list of all

polygons in order of ascending priority. By walking down the list, a number of tasks

TI .
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may be forked to execute in parallel. Each sub-list (all elements in the previous list

except the first) contains the information necessary for the comparisons to be made.

The first element of each list points to the new polygon, while the remaining elements

represent previous polygons, each of which has a priority higher than the new one. For

example, consider five polygons in a scene ordered as (P2 P4 PI P3 P5) where priority

increases from left to right. Five tasks are forked off:

PPProcess (P2 P4 P1 P3 P5) -- P2 compared to P4, P1 P3, P5

Process (P41 P3 P5). P compared to P, P5

Process (P1 P3 P5) -- P1 compared to P1, P5

Process (P3 P5) -- P3 compared to P5

Process (P5) -- P5 drawn automatically

Thus, given a prioritized list:

(1) Each polygon in the list may be processed in parallel, since the

information necessary to process each polygon is contained in the

remainder of the list.

(2) Within the list of higher-priority polygons, each process to calculate

the invisible line segments may again be conduclcd in parallel.

i-.

.......................................................
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(3) The calculation of line intersections for each pair of lines may be done

concurrently.

Assuming the realization of all available parallelism, the time required to process

a scene using the geometric method becomes linear, being the time required to walk

down the prioritized list of polygons and fork off the necessary tasks. The real work

performed by the algorithm, comparing a new polygon against an existing polygon, can

be done in constant time O(v), where v is the number of vertices in a polygon. But

while the lack of data dependencies implies no significant growth in the critical path of

the algorithm, the computational growth implies a requirement for O(N2 ) growth in the

number of processors in order to achieve full parallelism. One could seemingly

improve the complexity of the algorithm by having a tree-like priority list; this would

enable the algorithm to skip some clearly irrelevant polygons. As will be seen shortly,

the algorithm in Section 3.3 does just this.

3.2.4 Test Results

The results obtained from this purely geometrical approach were interesting.

Processing the twenty polygons in the test scene required a total of 772,435 instructions

with a critical path of 12,158; this gives a parallelism factor of close to 64. Compared to
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the painter's algorithm, the geometric approach required roughly ten times as much

total work, but took only one fifth as long. Besides the relative lack of recursion in this

approach, the other reason for better results seems to be the use of the FORK

mechanism (see Appendix A) to create the parallelism (PCONS is still utilized

indirectly through the PMAPCAR function). The FORK mechanism allows for the

generation of parallel tasks without the overhead required of the PCONS mechanism

(joining the two values together in spite of which task finishes first). FORK is used to

start a parallel task for each polygon in the scene by CDRing down a list of the

polygons in the scene (as discussed above).

Additional efficiency is obtained because the tasks are forked in order of

descending processing requirements. The last task started requires the least processing

time, since the first polygon is drawn immediately. The number two polygon only

needs to compare against the first polygon, and so on. This means that the first task

started (the most time-consuming) is well on its way to completing as the last task is

forked, making the most effective use of the forking mechanism, in light of the

processing requirements.
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3.3 Geometric and Quad-Tree Combination Algorithm

The final algorithm for this thesis involves a combination of the quad-tree

algorithm of Section 3.1 and the geometric algorithm of Section 3.2. The major

problem with the quad-tree algorithm is its tendency to create a large workload by

requiring a sub-quadrant to be a single color; in many cases this causes recursion down

to the maximum resolution of the display. The geometric algorithm exhibits large

j/ computational growth characteristics, but is very fast for a reasonably small number of

polygons. Conceptually, it is possible to modify the quad-tree algorithm so that a

quadrant need not be empty, full, or subdivided, but may be empty, populated, or

subdivided. Being populated means that a quadrant has one or more polygons within

its boundaries. Using this relaxation of the quad-tree constraints, then, the geometric

algorithm is used to solve the hidden line problem within each quadrant. Details on

quad-trees may be found in Section 3.1.1. This section will present a detailed discussion

of this combination algorithm, followed by simulation test results and a computational

complexity analysis.

* I
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3.3.1 The Algorithm

As with the previous two algorithms, this one assumes as input a prioritized list of

polygons. The algorithm processes each polygon in order, using the geometric method

(Section 3.2) to determine the visible line segments. Initially, the quad-tree will contain

only the root node, corresponding to the entire display area. Polygons will be processed

and added to the list of polygons for that node. Because of the O(N 2 ) growth in

computation in the geometric method, however, the algorithm imposes an arbitrary

limit to the number of polygons which may occupy the node. When the population for

the root node exceeds the limit, the screen is logically subdivided into four quadrants,

the root node is divided into four sub-quadrants, and the existing polygons are

physically divided among those quadrants (Figure 3-7). This should result in each

quadrant having a population of polygons less than the maximum allowed, unless the

polygons are all stacked one on top of the other.

1k;



-92-

(*1
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(3) (5)

I A

(4) (4)

Figure 3-7

Quadrant Population Decreasing Upon Subdivision

One could view this as a process in which polygons travel down the quad-Liee,

subdividing when necessary, until a leaf node of the quad-tree is reached. If tile node is

- I--!--_ _ __ _ _ --'- "
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empty, the polygon will display itself and start the list of polygons for that node. If the

node is populated, then the polygon will calculate its visible segments with respect to

the rest of the polygons in the node, then add itself to the list of polygons. If that node

is then overpopulated, the node is subdivided and the polygons divided among the

sub-quadrants. Because the polygons are divided at the quadrant boundaries, the

algorithm exhibits the parallelism of both the quad-tree algorithm and the geometric

algorithm: all quadrants may be processed in parallel, and within each quadrant, all

geometric calculations may occur simultaneously. It is important to notice that

although each polygon in the priority list is processed in order, it is not necessary for

one polygon to finish processing before the next begins. Thus, view the algorithm as a

sequence of polygons following each other through the quad-tree, and assume the

constraint that no polygon may overtake another. The quad-tree may of course grow

but cannot shrink, because unlike the quad-tree algorithm, no consolidation of nodes is

possible. This means that a polygon may proceed along the quad-tree without waiting

for mutation of the data structure.

The primary problem with this algorithm appears to be the very existence of a

population limit for a quadrant, for it is easy to conceive of scenes or views of certain

scenes which might result in a number of polygons being "stacked" on lop of one

another. If this number is higher than the population limit, then no amount of
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subdivision will resolve the issue. Special handling of such situations is necessary, and

the algorithm must be smart enough to know when a situation exists which is too

complicated to handle. The subdivision of quadrants must be limited to an arbitrary

finite amount, possibly to the smallest resolvable unit of the display. An alternate

method might be to endow the algorithm with the ability to detect polygons which

completely fill a quadrant. This would seem to be.a simple task, since in the process of

clipping a "surrounder" polygon to a quadrant's boundaries, that clipped polygon and

the quadrant would have the same vertices. Then, for all subsequent polygons which

might otherwise populate that quadrant, no further processing would be necessary since

the surrounder polygon has the higher priority.

The subdivision of polygons among quadrants can be done using existing

methods [21], but special care is required in the interpretation of these "artificial"

polygons. As shown in Figures 3-8(a-b), the polygon sh,_wn becomes four distinct

polygons, each having one or more edges defined by a segment of a sub-quadrant

boundary. These edges must be used in the determination of visible line segments

when other polygons are clipped against them, but they must also be treated as invisible

line segments for display purposes (else the anomalies in Figure 3-8c).

... ....._________
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(a) 
(b)

Ii-J

(C))

* 
(c)

Figure 3-8

Trestment of Quadrant Boundaries as Invisible Line Segments

This approach differs from the Warnock algorithm in that the latter, for each area

of the screen under consideration, processes the entire list of objects contained within

that quadrant. The list of objects initially includes all objects in the scene (since the

quadrant is the entire screen), and may diminish as the screen is subdivided.

Determination of a surrounder polygon which hides all other polygons in a quadrant

can result in early termination of processing for a paticular quadrant. The algorithm

described here, however, processes the entire screen for e3ch object, eliminating

quadrants from consideration as the processing continues. Th:e same quadrant will be

M
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processed many times, while the Warnock algorithm processes each quadrant only

once.

3.3.2 Test Results

The maximum population for a quadrant seems to be a parameter with which to

tune both the amount of total work (dominated by the geometric calculations) and the

amount of subdivision (dominated by the quad-tree aspects of the algorithm). For the

quad-tree/geometric combination, the results from processing the test scene of 20

polygons did in fact center on the maximum allowable number of polygons in a

quadrant. For an upper limit of 10 polygons, the work was roughly one-fourth that of

the quad-tree method, and the critical path was essendally the same. Compared with

the geometric method, though, the total work was three times as much, and the critical

path was roughly ten times as long. When an upper limit of 25 polygons was set, this

meant that no subdivision of the image space would be necessary, since there were only

20 polygons in the test scene. The work was thus dominated by the geometric portion

of the algorithm; in fact, the total work was comparable with the purely geometric

approach, but the critical path was still approximately equivalent to the quad-tree

approach. This was because limitations of the simulation study implementation did not

allow polygons to "follow" each other; the resultant sequential nalure of the process
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produced a critical path that was longer than necessary.

3.3.3 Complexity Growth Analysis

The complexity of this algorithm can be analyzed with respect to the following

functions: traversal of the tree/subdivision of the polygons, and geometric calculations

for hidden lines. This analysis is not a rigorous one, and is intended only for

comparison with the other algorithms. The traversal and subdivision can be done in a

time which is a function of the number of original polygons (n) and the population limit

(p). This is O(n*log(n/p)). The geometric approach is used to process each polygon in

the quadrant. Each quadrant can be processed in constant time O(p2 ), assuming the

worst case of no available parallelism. The total processing required by the geometric

portion of the algorithm is the product of this and O(n/p), the total number of nodes in

the tree. The total processing thus becomes O(np). We can combine the two phases

such that the total work for the algorithm is O(n*log(n/p)) + O(np), or O(n

(p + log(n/p))). As p gets larger, the time to process the polygons with the geometric

method grows as p , but the amount of subdivision (hence the number of nodes in the

tree) decreases. This implies the existence of a besi value for p such that the total

execution time for the algorithm is a minimum.

-I . . . , _ , . ... .. # _ "- .
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Chapter 4. Summary

This thesis has dealt with the hidden surface removal problem as two distinct

functions: establishment of a priority order for the polygons in a scene, and removal of

the hidden lines/surfaces based on that priority order. This chapter will review the

major points of object space decomposition for use in prioritization, and will summarize

the three hidden surface algorithms presented in Chapter Three. Finally, some

recommendations for further study will be presented, focused not on the hidden surface

problem in general, but on the work done for this thesis. These will basically be

descriptions of the areas the author would explore in more depth. if work on this thesis

continued.

Prioritization for the polygons in a scene was made possible through

decomposition of the scene's object space. The scene is enclosed in an arbitrary cubic

volume and subdivided in a binary fashion until each octant of the volume is "easily

interpreted." An octal-tree is used to map the resultant decomposed volume and

provide a storage structure for the polygons. Prioritization for the polygons is

accomplished by traversing the octal-tree in a specified order and processing the

polygons as they are cncountered. The travcrsal order is deterrnined by the viewpoint

4
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of the scene, and is constant at all levels of the tree.

The above traversal strategy is valid only for octal-trees which contain at most one

polygon per octant. This implies a requirement for physical division of the polygons at

the octant boundaries, and results in a prohibitive number of artificial polygons,

affecting both storage space and traversal time. A strategy of defining arbitrary

"centroids" for polygons was adopted, in which decomposition occurs only until

centroids are alone in their octants; no artificial polygons are created. However, the

same method of traversing the octal-tree produces anomalies in the priority list, due to

the fact that polygons may cross octant boundaries. This resulted in the development of

a method for determining pairs of polygons which could produce anomalies in the

prioritization. An algorithm was presented which tesLed polygons for "coupling" and

associated information with those polygons for use in "decoupling" them. The traversal

strategy then became one of processing uncoupled polygons as they are encountered,

but requiring additional processing for any coupled polygons. The uncoupling process

involves a simple comparison, and impacts on the processing time only for scenes in

which the polygons are fairly completely coupled to each other.

The hidden surface algorithms presented in this thesis all assume a list of

prioritized polygons as input. Each algorithm emphasizes concurrency. The first
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algorithm, intended for raster scan/bit map displays, uses quad-trees to manage the

display area and effect hidden surface removal. Quad-trees were defined in Section

3.1.2. Conceptually, the algorithm uses one quad-tree to represent the state of the

display and one to represent a polygon. By merging the two trees such that the display

tree has priority, front-to-back hidden surface removal is achieved. The main problem

with this algorithm is that recursion, through binary subdivision of the display area,

generally occurs down to the single pixel level. This is because the algorithm constrains

quadrants to be a single color. The main work for the algorithm involves determining

whether a given quadrant should be colored, uncolored, or further subdivided. In

situations where recursion down to the pixel level is necess-y, a great deal of

unnecessary computation takes place. The algorithm exhibits a high degree of

parallelism, but the computational complexity grows rapidly until the screen becomes

70% full or more (this may never happen for certain scenes).

The second algorithm deals with a geometric method for determining hidden

lines. Points of intersection are calculated between the edges of each polygon and those

of any polygons having higher priority. From these points, visible line segments are

constructed and displayed. Virtually all computations may be done in parallel. Thus,

to achieve all available parallelism, there is a requirement for O(N 2 ) growth in the

number of processors. For a small fixed number of polygons, however, the algorithm

, .w
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exhibits a rapid response time.

The third and final algorithm essentially combines the first two algorithms by

using quad-trees to reduce the complexity of a display so that the geometric method

may be used in parallel on each small portion of the display. The prioritized polygons

are apportioned to sub-quadrants of the display through binary subdivision of the

screen and physical division of the polygons. Each leaf node in the quad-tree is either

empty or populated with polygons (the list of polygons maintains the original priority

order). Within each quadrant, the hidden lines are removed using the geometric

algorithm. The number of polygons allowed in a quadrant is limited and arbitrarily

small: the population limit impacts both the amount of subdivision required for the

scene and the response time (because of the growth characteristics for the geometric

algorithm). Each quadrant may be processed in parallel, since there is no overlap

between polygons in neighboring quadrants. The algorithm exhibits a relatively small

growth in complexity, being a function of the number of input polygons and the

allowable quadrant population.

Further study into this area of research would concentrate on developing an

operational version of the prioritizer (Chapter Two) and combination method (third

algorithm in Chapter 1'hree), implementing it on a parallel processor, and rigorous
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testing with complex scenes. A producer/consumer approach would be investigated, in

which the traversal of the octal-tree (with uncoupling as necessary) would produce a

stream of prioritized polygons. This stream would be consumed by a process which

implemented the quad-tree/geometric combination algorithm. The time required for

octal-tree traversal should be proportional to the time necessary to process and display

the polygons; both processes would execute simultaneously. Simulation studies for this

thesis were admittedly limited in scope, and it would be interesting to see how this

j approach works under normal operating conditions.

I
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Appendix A

Implementation issues

Software

The language chosen for software development was LISP, for two reasons. First,

LISP provides a powerful list processing capability; the basic functionality of LISP is

(CAR (CONS A B)) = A and (CDR (CONS A B)) = B. List structures are very

convenient for representing graphics data structures. The language also provides a

powerful programming environment for testing and debugging software, and all of the

essential structured programming mechanisms (if ... then ... else, do ... while, etc.) are

available in some fashion. The overriding reason for using LISP, however, was the

existence of a simulator for a multi-processor system based on the MuNet parallel

processor [8].

The Simulator

The simulator system consists of a front-cnd compiler which compiles LISP into a

stack-oriented LISP-like machine language, which then rtins tinder the simulator.
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Using this approach, the hidden surface algorithms were first developed and tested

using a conventional LISP interpreter and debugging environment, after which the

software was transferred to the simulator in order to investigate and evaluate the

parallelism inherent in each algorithm.

The compiler (LCOMP) transforms LISP into what is termed LCODE. LCOMP

provides a capability for parallel processing through a basic yet powerful mechanism

called "peons" (parallel cons). In determining the value of the expression (PCONS A

B), the evaluation of A and B take place in parallel. The simulator forks off two tasks

which effectively execute in parallel, and the resultant values are placed into the CAR

and CDR portions of a conscell. The PCONS expression may be nested, providing a

virtually unlimited potential for parallelism. A considerable amount of overhead exists

with the evaluation of a PCONS expression, so that careful consideration must be given

to its use. As a trivial example, the evaluation of (PCONS (4 1 2) (* 3 4)) requires

three times as much processing time as does (CONS (+ 1 2) (* 3 4)), while the

evaluation of complicated expressions makes the use of PCONS well worth the

overhead. For instance, assuming a factorial function FACT defined in LISP as

(DEFUN FACT (N) (COND ((< N 2) 1) ([ (* N (FACT (- N 1))))))

then the evaluation of (PCONS (FACT 5) (FACT 7)) results in a total of 389



-108-

instructions with a shortest path of 232, while (CONS (FACT 5) (FACT 7)) requires

371 instructions.

The existence of PCONS allows a host of auxiliary parallel constructs to be

defined by the user, all of which either utilize PCONS directly, or use the same forking

mechanism as PCONS. These include a parallel MAPCAR called PMAPCAR, defined

as

'de ,n PMAPCAR (f I)

(cond ((null I) nil)

(t (PCONS (f (car I))

(PMAPCAR f (cdr l,))))

Additionally, a PCALL construct makes use of the fact that LISP uses call-by-value for

function calls; each actual parameter is evaluated in parallel by using PCONS to create

the argument list. Lastly, a FORK command provides a "fork and die" capability, such

that the value calculated by each sub-task is not returned to the parent process.

A Factor for Determining Parallelism

A simple way of expressing the parallelism realized from an execution of an

LCODE program is by dividing the total number of instructions required of all the

tasks (including oveihead for forking and joining) by the nmber of instructions

It
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I required by the "longest path". The first figure is an expression of the amount of work

performed by the processors, while the second figure gives an idea of the time required

to complete the program (if all the simulated parallelism were realized). The

parallelism factor is the quotient of these two figures, which gives an average)

parallelism (number of tasks that were active) over the course of program execution. In

other words, for TI/LP = P, then if the program is to execute in time LP, an average of

P tasks must be active over the course of program execution.

Systems Trivia

* The systems on which development and testing of the ilgorithms occurred

included an Interdata minicomputer and Ramtek display generator with a raster scan

monitor, operating under the MagicSix operating system. The bulk of the work took

place on a VAX 11/780 operating under the Unix operating system (Berkeley version),

primarily for using the parallel processing simulator. Certain portions of the algorithms

described have been programmed in Fortran, PL/l, C, and Lisp.

Data Structures

Three-dimensional computer graphics applications often imply the use of list and

tree data structures. Modelling a 3-D scene might involve the definition of a number of
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shapes, each of which is composed of an arbitrary number of polygonal surfaces. Each

polygon might be described by a list of edges, and each edge would be a pair of points.

A powerful list structure capability is very useful for these purposes. The tree

structures, as already discussed in the case of quad- and octal-trees, are easily

represented as recursively defined lists, such that each node (list) represented a subtree,

and contained either four or eight subtrees, respectively. Each node of the subtree

would either contain data (empty or full) or would be another subtree.

The following list structures were used in the evaluation of the hidden surface

algorithm:

3D point (x y z) -- (where parentheses denote a list)

2D point (x . y) -- (the period denotes a "pair", a special case of a list)

line (point, . point 2 )
line equation (a b c)--(ax + by + c = 0)
plane equation (a b c d)-- (ax + by + cz + d = 0)
polygon (inside-point plane-equation lineI line2 *. line )

shape (center-point polygon1 polygon2 . . polygonn )

points list (point, point2  ... point n ) -- (all points in scene)

polygons list (polygon1 polygon2 . . . polygon) -- (all polygons in scene)

quad-tree (node1 node2 noae3 node 4 )

node: empty (nil), full (data), quad-tree

octal-tree (((node1  node, ) node node4) (node5 node6) node7 .node 8 )

node: empty (nil), full (data), octal-tree

This particular representation for an octal-tree was chosen to minimize the average

number of CARs and CDRs i :quired to access any of the eight nodes in a subtree. The

*1
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box-and-pointer representation for the octal-tree is shown below.

tree

, T

N1  N2  N3  N4  N5  N6  N7  N8

Box-and-pointer Diagram for Octal-tree

Use of the.FORK Mechanism in LCODE

There appear to be some useful applications for the FORK mechanism in

LCODE, particularly in cases where the results of expression evaluations are not

needed. In these graphics algorithms, the desired outcome is a number of side effects

resulting in picture information (line segments and the like) being sent to a graphics

-.r V
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display device. In these cases, the overhead from PCONS is unnecessary since the

expression values are not needed. The use of FORK in lieu of PCONS results in a

significant savings in computation time. This fact was demonstrated by a short test in

which the twenty polygons in the test scene were transformed from simple lists of line

segments to a list which contained the known inside point, min-max boundaries of the

polygon, and the line segments with the line equation added. This work was the job of

the GETEQN function mentioned below. For testing PCONS, the code used was

simply

(PMAPCAR GETEON polgon-list)

and, for testing FORK,

(while polygon-list

(fork (GETEON (car polygon-list)))

(setq polygon-list (cdr Dolygon-list)))

The results for the PCONS test were 22,585 total instructions with a longest path of

1,330 (parallelism of 17), and for the FORK test 21,866 instructions with a longest path

of 707 (parallelism of 31). Part of the reason for the longer time of PCONS is the

combination of PCONS overhead and function call overhead, since PMA13CAR calls

.... , .. ,: J :,, k, , , ., .J. .__,___._....._ I
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itself recui.ively. This test was actually not a valid use of the FORK mechanism, since

in the case of using GETEQN, the results were needed in a list structure which

resembled the structure of the input list of polygons, and the above code (using the

FORK) would not be capable of returning such a structure.

.1

*1I
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Appendix B

Implementation of Quad-Tree Algorithm

function MergeTrees (old new)
flag1 = MergeNode (old.n[1], new.n[1j)

flag2 = MergeNode (old.n[2], new.n[2])

flag3 = MergeNode (old.n[3], new.n[3]) /* All of which can be /

flag4 = MergeNode (old.n[41, new.n[41) /" calculated in parallel 0/

if (flag1 = flag2 = flag3 = flag4 = 'occupied') then
return ('occupied')

else

return (MakeTree (flagi, flag2, flag3, flag4))

endif

end MergeTrees

/0 Get the octal tree for the new polygon */

function GetTree (polygon, x, y, size)
if size < = 1 then

return ('occupied')

endif

flag = Black-or-White? (x, y, size, polygon)

if flag = 'black' then

return ('occupied')

* - else
if flag = 'white' then

return ('empty')

endif

mid = size / 2

/0 All four invocations of GetTree may execute in parallel /

return (MakeTree ( GetTree (polygon, x, y + mid, mid),



, - 115-

GetTree (polygon, x + mid, y + mid, mid),

GetTree (polygon, x, y, mid),

GetTree (polygon, x + mid, y, mid)))

end GetTree

function MergeNode (old new)

if empty? (old) then

return (new)

else

if occupied? (old) then
return (old)

else

if empty? (new) then

1sreturn (old)
! else

if occupied? (new) then

return (new)

else

return (MergeTrees (old, new))

endif

end MergeNode

/° See if any endpoints of the input lines lie inside the quadrant 0/

function Contains? (x, y, size, lines)

for each line in lines do

pt = line.p1
if pt.x ( x then return (false) else
if pt.x > x + size then return (false) else

if pt.y < y then return (false) else

if pt.y > y + size then return (false) endif

endfor
return (true)

.* end Contains?

/ Check to see if quadrant should be full (black), empty (white), or

.4.**, *-*- * - * - - . ' -4
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/ subdivided (unknown). /

function Black-or-White? (x, y, size, polygon)
* p-in = polygon.inside

pminmax = polygon minmax
lines = polygon.lines

I The following four calculations may all take place in parallel 0/

flagi = Inside? (x, y+ size, p-in, lines)

flag2 = Inside? (x + size, y + size, p-in, lines)

flag3 = Inside? (x, y, p-in, lines)

flag4 = Inside? (x + size, y, p-in, lines)

.4

/0 Min-Max test /

if BoxDisjoint? (x, y, size, pminmax) then return ('white') endif

S/I All four corners of quadrant are inside the polygon */

if (flag1 and flag2 and flag3 and flag4) then return ('black') endif

-* /* One corner of quadrant is inside the polygon "

I if (flag1 or flag2 or flag3 or flag4) then return ('unknown') endif

/* At least one polygonal vertex is inside the quadrant boundaries *

if Contains? (x, y, size, lines) then return ('unknown') endif

/0 Test to see if the quadrant boundaries and the polygon intersect anywhere "

if x > pminmax.xmin then return (Look (lines, MakeLine (x, y, x, y + size))) endif

if x + size < pminmax.xmax then return (Look (lines, MakeLine (x + size, y, x + size, y + size))) endif

if y > pminmax.ymin then retu. n (Look (lines, MakeLine (x, y, x + size, y))) endif

.:~- - ---



- 117 -

if y + size < pminmax.ymax then return (Look (lines, Ma~eline (x, y + size, x + size, y+ size))) endif

/0 No intersections... the polygon and quadrant must be disjoint */

return ('white')

end Black-or-White?

/0 Test to see if test line intersects any of input lines 0/

function Look (lines, testline) returns string
flag = 'white'

for each line in lines do
if Intersect (line, testline) then

flag = 'unknown'

endif

endfor
return (flag)

end Look

/0 Utility function to create a line structure from two points /

function MakeLine (pl p2) returns List

return (CONS (EqLine (p1, p2), CONS (pl, p2)))

end MakeLine

/0 For each line in the polygon, plug the two points into the line equatioin. '/

/* If the signs are the same for both points w.r.t. each line, the test point /

/0 is inside the polygon. V

boolean function Inside? (x-test, y-test, x-in, y-in, polygon)
line-list = polygon.lines

for each line in line-list do

eq = line.eq

a = eq.a

b = eq.b



II

c= eq.c

vail = a'x-test + b*y-test + c

val2 = a'x-in + b*y-in + c

if sign (vail) not sign (val2) then

return (false)

endif

endfor
return (true)

end Inside?

function Merge (node, polygon, x, y, size)

mid = s/2

if node = 'occupied' then
return (node)

else

if node = 'empty' then

flag = Black-or.White? (polygon, x, y, size)

if flag = 'black' then
paint (color (polygon), x, y, size)

return ('occupied')

else

if flag = 'white' then

return ('empty')

else

return (MakeTree ( Merge ('empty', polygon, x, y + mid, mid),

Merge ('empty', polygon, x + mid, y + mid, mid),

Merge ('empty', polygon, x, y, mid),

Merge ('empty', polygon, x + mid, y, mid)))

endif

else

return (MakeTree (Merge (node[l], polygon, x, y+ mid, mid),
Merge (node[21, polygon, x + mid, y + mid, mid),

Merge (node[3], polygon, x, y, mid),

Merge (node[4J, polygon, x + mid, y, mid)))

endif

end Merge



function Paint (color, x, y, size) 1' assumed to be intrinsic 0/
function MakeTree l, vaI2, val3, vaI4) /0 assumed to be intrinsic/
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Appendix C

Implementation of Geometric Method

P This procedure takes the input prioritized list of polygons and forks V/

/* off a parallel task for each polygon. The first element becomes the '/
/* new polygon, the remainder of the list becomes the list of old poly- */

/* gons, and the task is started. The first element is then removed, and /

/* the process continues until the list becomes empty. °/

procedure Geometric (pol-list)

while pol-list
new.pol = CAR (pol-list)

old-pols = CDR (pol-list)

FORK (ProcessPolygon (new-pol, pol-list)

pol-list = old-pols
endwhile

end Geometric

/ This procedure is the manager of the algorithm, being responsible for */

P computing the invisible line segments, calculating any visible line *
/0 line segments, and drawing them. 0/

procedure ProcessPolygon (new-pol, pol-list)

/ For each 'old' polygon, calculate the invisible line segments /

inv-list = PMAPCAR (Compare, pot-list)

/0 Create a 'new' polygon such that each line is ordered by ascending /
P X-values, or if the X-values are equal (vertical line), then by /

/0 ascending Y-values. /

polygon = PMAPCAR (Order, new-pol)

/0 Merge all the invisible line segments onto the polygon, creating /

:a : , L . _ ;._ ! . , i,,b . - : a '
- . _• . . . ¢ -: ;. _- ,L J



t - 121-

/ a list of visible line segments for each edge in the polygon. '/

": MAPCAR (DoPol, inv-list)

PMAPCAR (DrawPol, polygon) /* Draw the line segments which are visible /

* ;end ProcessPolygon

/I This procedure is used to simulate a lambda expression in Lisp in 0/
/* which 'new-pol' is global to this procedure. 'Compare' is used *

/* solely as a handle for invoking the 'Computelnvisible' procedure. '/

function Compare (old-pol) returns List
return (Computeinvisible (old-pol, new-pol))

end Compare

function Order (pair) return List

pi = CAR (pair) / lines are dotted pairs /

p2 = CDR (pair) /0 (p1. p2) /

if pl.x = p2.x then /* vertical line *
if pl .y < p2.y then

return (pair) / already in ascending Y I/

else
return (CONS (p2, pl)) /* reverse the points */

endif

else P horizontal line /
if pl .x < p2.x then

return (pair) /* already in ascending X ./

else

return (CONS (p2, pl)) /* reverse the points /
endif

end Order

' This procedure is essentially a lambda mechanism for performing side /

/0 effects on the polygon line segments. 'lnv-list' is the list of /
/ invisible line segments for the current 'old' polygon, and 'pol-segs' /
/" contains the line segments for the new polygon, already masked to /

ti

I .
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/" some extent by previous old polygons. Both 'inv-list' and 'pol.segs' /

/0 have a number of elements equal to the number of edges in the new /

/0 polygon. */

procedure DoPol (inv-list)

pol-segs = MAPCAR2 (ProcessMask, inv-list, pol-segs)
end DoPol

/* Nothing really special here... included for completeness /

procedure DrawPol (line-segs)

MAPCAR (DrawLine, line-segs) / DrawLine assumed to be intrinsic °/

end DrawPol

/. ComputeInvisible returns a list of invisible line segments w.r.t. the /

/* current 'old' polygon.

function Computelnvisible (old-pol, new-pol) returns List

return (PMAPCAR (ProcessLine, new-pol.lines))

end Computelnvisible

/* ProcessLine is ar.other handle to simulate a lambda expression, used /

/* in the above procedure. 0/

function ProcessLine (line) returns List

return (GetSegment (line, old-pol.p-in, old-pol.lines))

end ProcessLine

/0 GetSegment does the majority of the actual work in the computation of /

/0 invisible line segments. Input is the edge of the new polygon, and 0/

/* the inside point and edges of the current old polygon. */

function GetSegment (new-line, p-in, old-lines)

pl = new-line.pl

p2 = new-line.p2

/0 Calculate all intersection points between the new line and the old /

/P polygon. There should be either zero, one, or two points returned I/

/0 Special handling is required in the case of the edge going through 0/
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/ one of the vertices of the old polygon, since one physical intersec- /

/* tion would return two identical points. 0/

intersections = Getintersects (new-line, p-in, old-lines)

/ Check to see if either of the endpoint for the new edge are contained /
/ within the old polygon. If so, then form the invisible line segment 0/

/* from one or more of the endpoints and one or more of the intersection */

/ points. If neither endpoint is inside the old polygon, AND there /

/ were no intersection points, then NULL is returned, since the line 0/

/ is completely visible with respect to that polygon. /

if Inside? (pl.x, pl.y, p-in, old-lines) then

if Inside? (p2.x, p2.y, p-in, old-lines) then

return (Order (new-line)) /* Entire line invisible /
else

return (Order (CONS (pl, CAR (intersections)))) /* Bisect /

endif

else

if (Inside? (p2.x, p2.y, p-in, old-lines) then

return (Order (CONS (CAR (intersections), p2))) /* Bisect /

else
if (intersections = NULL) then

return (NULL) /0 Entire line visible */

else
return (Order (intersections)) / Trisect /

endif

end GetSegment

/* This procedure calculates any intersection points between the input /

/ line and polygon (defined by 'p-in' and 'old-lines'). Since convex /

/0 polygons are assumed, there can be at most two intersection points, '/

/ so special handling is necessary to avoid any duplication. 0/

function GetIntersect (new-line, p-in, old-lines)

intersections = NULL

for each line in old-lines do

flag = Intersect (new-line, line) /* Get intersection point (if any) /

if flag then
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if intersections then
intersections = CONS (flag, intersections)

else

intersections = flag

endif

endif

endfor

if Length (intersections) < 3 then

intersections = Weed (intersections) / Obvious magic performed here */

endif
return (intersections)

end GetIntersects

/* ProcessMask takes an invisible line segment (the mask), and projects it /

/* onto the current list of visible line segments. This list may grow and 'I

/* shrink, depending on the masks which are placed on it. This function V

/* is recursive, for use in walking down the list of segments. Notice
/* this routine is written for non-vertical lines only. In the case of /

/° vertical lines, the Y-values would be compared, and a similar collec- 'I

P tion of logic would be required. /

function ProcessMask (mask, lines) returns List
line = CAR (lines)

if line = NULL then return (NULL) endif / no more visible line segments /

if mask = NULL then return (lines) endif / no invisible line segment to mask V

/° Rather than attempt to explain the masking technique in English, /

/0 reference is made to the diagrams in Figure 3-. for each situa- */

/° tion which might arise. 0/

/* Figure 3-.a /

if mask.p2.x ( line.pl.x then return (lines) endif

/* Figure 3-.b /

if maskpt.x > line.p2.x then

return (CONS (line. ProcessMask (mask, CDR (lines))))



eridif

if mask.pl .x > line.p .x then

/0 Figure 3--c /

if mask.p2.x < line.p2.x then

return (CONS (CONS (line.pl, mask.pl),

CONS (CONS (mask.p2, line.p2),

CDR (lines))))

else

P Figure 3--d /

return (CONS (CONS (line.pl, mask.pl),

ProcessMask (mask, COR (lines)))

endif

* endif

/" Figure 3--e "/

it mask.p2.x < linc..p2.x then

return (CONS (CONS (mask.p2, line.p2), CDR (lines)))

endif

/* Figure 3--f 1

return (CONS (line, ProcessMask (mask, CDR (lines))))

*end ProcessMask



-126-

Appendix D

Implementation of Quad-Tree/Geometric Combination

procedure ProcessNode (node, polygon, x, y, size)

if node = 'full' then
return (node) /* no processing needed /

else

if Subdivided? (node) then /* RECURSE 'I

mid = size/2
return (MakeTree ( ProcessNode (node[I1, polygon, x, y+ mid, mid),

ProcessNode (node[2], polygon, x + mid, y + mid, mid),
ProcessNode (node[3], polygon, x, y, mid),
ProcessNode (node[4], polygon, x + mid, y, mid)))

else

if QuadrantFull? (polygon, x, y, size) then
return ('full') /0 Suriounder °/

else

lines = ClipPolygon (polygon, x, y, size)
if lines = NULL then

return (node) /* polygon not visible in this quadrant *

else

if node = 'empty' then
DrawPolygon (lines) /* empty quadrant; draw any part of */
node = List (1, polygon) /* visible in quadrant and add to list 0/
return (node)

else

/* Quadrant has polygons in it; process using geometric method. *

ProcessPolygons (lines, node.polygons)

node.count = node.count + 1
node.polygons = node.polygons & polygon

/0 if too many polygons are in this quadrant, divide it to reduce complexity.

,11.I- 1 _**



- 127 -

if nodecount > ACUTte

return (node)
endif

endif
endif

end ProcessNode

/* True iff each corner is inside quadrant ~

function QuadrantFull? (polygon, x, y, size) returns boolean
p-in =polygon.inside

lines =polygon.lines

flagi Inside? (x, y, p-in, lines)

* flag2 =Inside? (x, y +size, p-in, lines)
flag3 =Inside? (x + size, y + size, p-in, lines)
flag4 =Inside? (x + size, y, p-in, lines)

return (flag 1 and flag2 and flag3 and tlag4)
end QuadrantFull?

/* Clip each line in the polygon against the window defined by x, y, and size./

function ClipPolygon (polygon, x, y, size) returns List
lines = polygon.lines

* new-lines = NULL

XL x
XR =x + size
YB =y

YT =y + size

for each line in lines do
L = Clip (linepi, line.p2)
if L not =NULL then

new-lines =new-lines & L /P '8denotes concatenation 0/

endif
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endfor

return (new-lines)

end ClipPolygon

/0 The Clip and Code routines can be found in Newmann & Sproull,/
/0 PrincipleS of Interactive oMpu1e Graphics, 1st Edition. */

/* Get the polygon list from the node, divide quadrant into four, and for each /
/* sub-quadrant, filter out the polygons which belong. *

function Divide (node, x, y, size) returns Node
pols = node.polygons
mid size/2

return (MakeNode ( CheckPolygons (pols, x, y+ mid, mid),
CheckPolygons (pols, x + mid, y + mid, mid),
CheckPolygons (pols, x, y, mid),
CheckPolygons (pols, x + mid, y, mid)))

end Divide

/* Check to see if polygons belong in quadrant defined by x, y, and size. Terminate 0/
/* early if surrounder polygon is found. /

function CheckPolygons (polygons, x, y, size) returns List
new~pols = NULL

for each polygon in polygons do
flag = Black-orWhite? (polygon, x, y, size)
if flag = 'black' then

return ('full')
else
if flag = 'unknown' then

new-pols = new-pols & polygon

endif
endfor
return (new-pols)

end CheckPolygons
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